Tek eksenli sıcak presleme tekniği ile imal edilen magnezyum matrisli kompozit malzemelerin korozyon davranışlarının incelenmesi
Year 2022,
, 34 - 41, 15.01.2022
Fevzi Kelen
,
Tarık Aydoğmuş
,
Mehmet Gavgalı
Abstract
Mevcut çalışmada, tek eksenli sıcak presleme tekniği ile üretilen %5-%25 hacimsel oranlarda TiNi içeren magnezyum matrisli kompozit malzemelerin korozyon deneyleri potansiyodinamik polarizasyon (PDS) testleri ile %3.5 NaCl çözeltisi içerisinde gerçekleştirilmiştir. Kompozit numunelerin korozyon potansiyeli (Ecor) ve korozyon akım yoğunluğu (ίcorr) değerleri Tafel ekstrapolasyonu metodu ile belirlenmiştir. Metalografik incelemeler mikroyapıda gözlemlenen değişimlerin elektrokimyasal değerler ile tutarlı olduğunu göstermiştir. Potansiyodinamik polarizasyon analizlerinde güçlendirici içeriğine bağlı olarak korozyon potansiyeli değerlerinin yanı sıra korozyon akım yoğunluğu değerlerininde önemli oranlarda arttığı saptanmıştır. Korozyon sonrası morfolojik incelemelerde numune yüzeylerinde çukurcuk korozyonu ile birlikte kurtçuk korozyonu da gözlenmiştir.
Supporting Institution
Türkiye Bilimsel ve Teknolojik Araştırma Kurumu ve Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Projeleri Birimi Başkanlığı
Project Number
TUBİTAK-Proje No: 215M808, BAP-Proje No: 2015-FBE-D275
Thanks
Bu çalışmayı finansal olarak destekleyen Türkiye Bilimsel ve Teknolojik Araştırma Kurumu’na (Proje No: 215M808) ve Van Yüzüncü Yıl Üniversitesi Bilimsel Araştırma Projeleri Birimi Başkanlığı’na (Proje No: 2015-FBE-D275), teşekkürlerimizi sunarız. Ayrıca saf magnezyum tozların temin edildiği, Magnezyum ve Metal Tozları Endüstri ve Ticaret Anonim Şirketine teşekkür ederiz.
References
- Aydogmus, T. (2015). Processing of interpenetrating Mg–TiNi composites by spark plasma sintering. Materials Science and Engineering: A, 624, 261-270. https://doi.org/10.1016/j.msea.2014.11.092
- Baboian, R. (2005). Automotive, Baboian R. (Ed.), Corrosion Tests and Standards: Application and Interpretation-Second Edition (pp. 673-687.). West Conshohocken; U.S.A: ASTM. https://www.astm.org/DIGITAL_LIBRARY /MNL /PAGES/MNL11004M.htm
- Dobrzański, L. A. Tański, T, Čížek, L. and Domagała, J. (2008). Mechanical properties and wear resistance of magnesium casting alloys. Journal of Achievements in Materials and Manufacturing Engineering, 31(1), 83-90.
- Eliezer, D. Aghion, E. and Froes, F. S. (1998). Magnesium science, technology and applications. Advanced Performance Materials, 5(3), 201-212.
- Esen, Z. (2012). The effect of processing routes on the structure and properties of magnesium–TiNi composites. Materials Science and Engineering: A, 558, 632-640.
- Esmaily, M. Svensson, J. E. Fajardo, S. Birbilis, N. Frankel, G. S. Virtanen, S. Arrabal, R. Thomas. S. Johansson, L. G. (2017). Fundamentals and advances in magnesium alloy corrosion. Progress in Materials Science, 89, 92-193. https://doi.org/10.1016/j.pmatsci.2017.04.011
- Ferrando, W. A. (1989). Review of corrosion and corrosion control of magnesium alloys and composites. Journal of Materials Engineering, 11(4), 299-313.
- Fink, R. (2003). Die casting magnesium, Kainer, K. U. (Ed.), Magnesium Alloys and Technology (pp. 23-44.). Germany WILEY-VCH Verlag.
- Friedrich, H. and Schumann, S. (2001). Research for a “new age of magnesium” in the automotive industry. Journal of Materials Processing Technology, 117(3), 276-281. https://doi.org/10.1016/S0924-0136(01)00780-4
- Gaines, L. Cuenca, R. Wu, S. and Stodolsky, F. Argonne National Lab., Washington, DC. (1996). Potential automotive uses of Wrought Magnesium Alloys. United States. Erişim adresi https://doi.org/10.2172/425305-03-Ocak-2021.pdf
- Ghali, E. Dietzel, W. and Kainer, K.U. (2004). General and localized corrosion of magnesium alloys: a critical review. Journal of Materials Engineering And Performance, 13(1), 7-23. https://doi.org/10.1361/10599490417533
- Ghassemieh, E. (2011). Materials in automotive application, state of the art and prospects. New trends and Developments in Automotive Industry, 20, 364-394. https://doi.org/10.5772/13286
- Hillis, J. (2006). Corrosion, Friedrich, H. E. Mordike, B. L. (Ed.), Magnesium Technology, (pp. 469-498.). Berlin; Germany: Springer-Verlag.
- Joost, W.J. and Krajewski, P. E. (2017). Towards magnesium alloys for high-volume automotive applications. Scripta Materialia, 128, 107-112. https://doi.org/10.1016/j.scriptamat.2016.07.035
- Kelen, F. (2014). Motorlu taşıt emisyonlarının insan sağlığı ve çevre üzerine etkileri. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(1-2), 80-87.
- Kelen, F. (2018). TiNi ile takviye edilmiş Mg/AZ91 matrisli kompozitlerin üretimi ve karakterizasyonu. Doktora Tezi, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Erzurum.
- Kelen, F. Gavgali, M. and Aydogmus, T. (2018). Microstructure and mechanical properties of a novel TiNi particulate reinforced AZ91 metal matrix composite. Materials Letters, 233, 12-15. https://doi.org/10.1016/j.matlet.2018.08.121
- Kelen, F. Aydoğmuş, T. Gavgalı, M. and Dikici, B. (2019).Toz metalürjisi yöntemi ile üretilmiş magnezyum matrisli kompozitlerin korozyon duyarlılıkları. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8(3), 914-920.
- Kelen, F. (2021). Magnezyum ve alaşımlarının otomotiv endüstrisindeki önemi ve uygulamaları. Journal of the Institute of Science and Technology, 11(1), 548-562. https://doi.org/10.21597/jist.789612.
- Lindström, R. Johansson, L. G. Thompson, G. E. Skeldon, P. and Svensson, J. E. (2004). Corrosion of magnesium in humid air. Corrosion Science, 46(5), 1141-1158. https://doi.org/10.1016/j.corsci.2003.09.010
- Luo, A. A. (2013). Applications: aerospace, automotive and other structural applications of magnesium. Fundamentals of Magnesium Alloy Metallurgy, 266-316.
- Mizuuchi, K. Inoue, K. Hamada, K. Sugioka, M. Itami, M. Fukusumi, M. and Kawahara, M. (2004). Processing of TiNi SMA fiber reinforced AZ31 Mg alloy matrix composite by pulsed current hot pressing. Materials Science and Engineering: A, 367(1-2), 343-349.
- Mordike, B. L. and Ebert, T. (2001). Magnesium: properties—applications—potential. Materials Science and Engineering: A, 302(1), 37-45.
- Otsuka, K. and Ren, X. (2005). Physical metallurgy of Ti–Ni-based shape memory alloys. Progress in Materials Science, 50(5), 511-678. https://doi.org/10.1016/j.pmatsci.2004.10.001
- Song, G. L. and Atrens, A. (1999). Corrosion mechanisms of magnesium alloys. Advanced Engineering Materials, 1(1), 11-33.
- Song, G. and StJohn, D.H. (2005). Corrosion of magnesium alloys in commercial engine coolants. Materials and Corrosion, 56(1), 15-23. https://doi.org/10.1002/maco.200403803
Investigation of corrosion behavior of magnesium matrix composite materials produced via uniaxial hot pressing technique
Year 2022,
, 34 - 41, 15.01.2022
Fevzi Kelen
,
Tarık Aydoğmuş
,
Mehmet Gavgalı
Abstract
In the present study, corrosion tests of magnesium matrix composite materials containing 5-25% by volume TiNi produced by uniaxial hot pressing technique were carried out with potentiodynamic polarization (PDS) tests in 3.5% NaCl solution. Corrosion potential (Ecor) and corrosion current density (ίcorr) values of composite specimens were specified by the use of the Tafel extrapolation method. Metallographic examinations have shown that the observed changes in microstructure are consistent with electrochemical values. In potentiodynamic polarization analysis, corrosion potential values alongside corrosion current density values, depending on the reinforcement content, were significantly found to increase. In post-corrosion morphological investigations, filiform corrosion was observed besides pitting corrosion on the sample surfaces.
Project Number
TUBİTAK-Proje No: 215M808, BAP-Proje No: 2015-FBE-D275
References
- Aydogmus, T. (2015). Processing of interpenetrating Mg–TiNi composites by spark plasma sintering. Materials Science and Engineering: A, 624, 261-270. https://doi.org/10.1016/j.msea.2014.11.092
- Baboian, R. (2005). Automotive, Baboian R. (Ed.), Corrosion Tests and Standards: Application and Interpretation-Second Edition (pp. 673-687.). West Conshohocken; U.S.A: ASTM. https://www.astm.org/DIGITAL_LIBRARY /MNL /PAGES/MNL11004M.htm
- Dobrzański, L. A. Tański, T, Čížek, L. and Domagała, J. (2008). Mechanical properties and wear resistance of magnesium casting alloys. Journal of Achievements in Materials and Manufacturing Engineering, 31(1), 83-90.
- Eliezer, D. Aghion, E. and Froes, F. S. (1998). Magnesium science, technology and applications. Advanced Performance Materials, 5(3), 201-212.
- Esen, Z. (2012). The effect of processing routes on the structure and properties of magnesium–TiNi composites. Materials Science and Engineering: A, 558, 632-640.
- Esmaily, M. Svensson, J. E. Fajardo, S. Birbilis, N. Frankel, G. S. Virtanen, S. Arrabal, R. Thomas. S. Johansson, L. G. (2017). Fundamentals and advances in magnesium alloy corrosion. Progress in Materials Science, 89, 92-193. https://doi.org/10.1016/j.pmatsci.2017.04.011
- Ferrando, W. A. (1989). Review of corrosion and corrosion control of magnesium alloys and composites. Journal of Materials Engineering, 11(4), 299-313.
- Fink, R. (2003). Die casting magnesium, Kainer, K. U. (Ed.), Magnesium Alloys and Technology (pp. 23-44.). Germany WILEY-VCH Verlag.
- Friedrich, H. and Schumann, S. (2001). Research for a “new age of magnesium” in the automotive industry. Journal of Materials Processing Technology, 117(3), 276-281. https://doi.org/10.1016/S0924-0136(01)00780-4
- Gaines, L. Cuenca, R. Wu, S. and Stodolsky, F. Argonne National Lab., Washington, DC. (1996). Potential automotive uses of Wrought Magnesium Alloys. United States. Erişim adresi https://doi.org/10.2172/425305-03-Ocak-2021.pdf
- Ghali, E. Dietzel, W. and Kainer, K.U. (2004). General and localized corrosion of magnesium alloys: a critical review. Journal of Materials Engineering And Performance, 13(1), 7-23. https://doi.org/10.1361/10599490417533
- Ghassemieh, E. (2011). Materials in automotive application, state of the art and prospects. New trends and Developments in Automotive Industry, 20, 364-394. https://doi.org/10.5772/13286
- Hillis, J. (2006). Corrosion, Friedrich, H. E. Mordike, B. L. (Ed.), Magnesium Technology, (pp. 469-498.). Berlin; Germany: Springer-Verlag.
- Joost, W.J. and Krajewski, P. E. (2017). Towards magnesium alloys for high-volume automotive applications. Scripta Materialia, 128, 107-112. https://doi.org/10.1016/j.scriptamat.2016.07.035
- Kelen, F. (2014). Motorlu taşıt emisyonlarının insan sağlığı ve çevre üzerine etkileri. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 19(1-2), 80-87.
- Kelen, F. (2018). TiNi ile takviye edilmiş Mg/AZ91 matrisli kompozitlerin üretimi ve karakterizasyonu. Doktora Tezi, Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Erzurum.
- Kelen, F. Gavgali, M. and Aydogmus, T. (2018). Microstructure and mechanical properties of a novel TiNi particulate reinforced AZ91 metal matrix composite. Materials Letters, 233, 12-15. https://doi.org/10.1016/j.matlet.2018.08.121
- Kelen, F. Aydoğmuş, T. Gavgalı, M. and Dikici, B. (2019).Toz metalürjisi yöntemi ile üretilmiş magnezyum matrisli kompozitlerin korozyon duyarlılıkları. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 8(3), 914-920.
- Kelen, F. (2021). Magnezyum ve alaşımlarının otomotiv endüstrisindeki önemi ve uygulamaları. Journal of the Institute of Science and Technology, 11(1), 548-562. https://doi.org/10.21597/jist.789612.
- Lindström, R. Johansson, L. G. Thompson, G. E. Skeldon, P. and Svensson, J. E. (2004). Corrosion of magnesium in humid air. Corrosion Science, 46(5), 1141-1158. https://doi.org/10.1016/j.corsci.2003.09.010
- Luo, A. A. (2013). Applications: aerospace, automotive and other structural applications of magnesium. Fundamentals of Magnesium Alloy Metallurgy, 266-316.
- Mizuuchi, K. Inoue, K. Hamada, K. Sugioka, M. Itami, M. Fukusumi, M. and Kawahara, M. (2004). Processing of TiNi SMA fiber reinforced AZ31 Mg alloy matrix composite by pulsed current hot pressing. Materials Science and Engineering: A, 367(1-2), 343-349.
- Mordike, B. L. and Ebert, T. (2001). Magnesium: properties—applications—potential. Materials Science and Engineering: A, 302(1), 37-45.
- Otsuka, K. and Ren, X. (2005). Physical metallurgy of Ti–Ni-based shape memory alloys. Progress in Materials Science, 50(5), 511-678. https://doi.org/10.1016/j.pmatsci.2004.10.001
- Song, G. L. and Atrens, A. (1999). Corrosion mechanisms of magnesium alloys. Advanced Engineering Materials, 1(1), 11-33.
- Song, G. and StJohn, D.H. (2005). Corrosion of magnesium alloys in commercial engine coolants. Materials and Corrosion, 56(1), 15-23. https://doi.org/10.1002/maco.200403803