Research Article
BibTex RIS Cite

About the Bonnet System of Invariants of a Surface in the Euclidean Space

Year 2017, Volume: 7 Issue: 2, 280 - 284, 31.07.2017

Abstract

Let  be the set of all coefficients of the first
and second fundamental forms of a surface
 in a Euclidean space.
Using computations of invariants from K for some surfaces, it is proved that K is
a minimal complete system of SM(3) -invariants of a regular surface in
,
where SM(3)  is the group of all special
Euclidean motions of
.

References

  • Gray, A.,1998. Modern Differential Geometry of Curves and Surfaces with Mathematica,CRC press.
  • Kaya, Y., Küçük, A. ve Melekoğlu, A.,2015, Diferensiyel Geometriye Giriş,(çev:Yusuf Kaya(eds)), Dora yayınları, ISBN 978-605-9929-34-9,Bursa.
  • Khadjiev, D.,2010. Complete systems of differential invariants of vector fields in a Euclidean space, Turk. J. Math,34,543-559.
  • Khadjiev D., Ören İ. and Pekşen Ö.,2013. Generating systems of differential invariants and the theorem on existence for curves in the pseudo-Euclidean geometry. Turk J Math, 37(1), 80-94.
  • Kose, Z., Toda, M., and Aulisa, E.,2011. Solving Bonnet problems to construct families of surfaces, Balkan J. Geom.Appl.,16(2),70-80.
  • Ören İ.,2016. Equivalence conditions of two Bézier curves in the Euclidean geometry,
  • Sibirskii, K. S.,1976. Algebraic Invariants of Differential Equations and Matrices, Kishinev, Stiintsa.

Öklid Uzayında Bir Yüzeyin İnvaryantlarının Bonnet Sistemi Hakkında

Year 2017, Volume: 7 Issue: 2, 280 - 284, 31.07.2017

Abstract

R3 Öklid uzayında, bir

 yüzeyinin birinci ve ikinci temel formlarının
tüm katsayılarından oluşan kümeyi K
  olsun. R3'ün tüm özel Öklid
hareketler grubu SM(3) olmak üzere, bazı yüzeyler için K'daki invaryantların hesaplanarak,
K'nın 
'teki bir regüler
yüzeyin SM(3)-invaryantlarının bir minimal tam sistemi olduğu ispatlandı.

References

  • Gray, A.,1998. Modern Differential Geometry of Curves and Surfaces with Mathematica,CRC press.
  • Kaya, Y., Küçük, A. ve Melekoğlu, A.,2015, Diferensiyel Geometriye Giriş,(çev:Yusuf Kaya(eds)), Dora yayınları, ISBN 978-605-9929-34-9,Bursa.
  • Khadjiev, D.,2010. Complete systems of differential invariants of vector fields in a Euclidean space, Turk. J. Math,34,543-559.
  • Khadjiev D., Ören İ. and Pekşen Ö.,2013. Generating systems of differential invariants and the theorem on existence for curves in the pseudo-Euclidean geometry. Turk J Math, 37(1), 80-94.
  • Kose, Z., Toda, M., and Aulisa, E.,2011. Solving Bonnet problems to construct families of surfaces, Balkan J. Geom.Appl.,16(2),70-80.
  • Ören İ.,2016. Equivalence conditions of two Bézier curves in the Euclidean geometry,
  • Sibirskii, K. S.,1976. Algebraic Invariants of Differential Equations and Matrices, Kishinev, Stiintsa.
There are 7 citations in total.

Details

Journal Section Articles
Authors

İdris Ören

Publication Date July 31, 2017
Submission Date February 23, 2017
Acceptance Date July 20, 2017
Published in Issue Year 2017 Volume: 7 Issue: 2

Cite

APA Ören, İ. (2017). Öklid Uzayında Bir Yüzeyin İnvaryantlarının Bonnet Sistemi Hakkında. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 7(2), 280-284.