Research Article
BibTex RIS Cite

Kompozit Levhalar için Ankastre-Tip Eğilmeli, Çok Numuneli Yorulma Test Makinesinin Geliştirilmesi

Year 2018, Volume: 8 Issue: 1, 1 - 17, 31.01.2018
https://doi.org/10.17714/gumusfenbil.304488

Abstract

Bu çalışmada, fiber takviyeli kompozit levhalar,
ahşap levhalar, plastik esaslı levhalar ve hafif metalik levhaların eğilmeli
yorulma davranışlarını karakterize eden özgün bir yorulma test makinesi
geliştirilmiştir. Geliştirilen özel bilgisayar yazılımı ile kontrol edilebilen
ankastre-tip eğilmeli test makinesi, yorulma testi için deplasman kontrol
metodunu kullanmaktadır. Yorulma testleri uzun süren mekanik testlerdendir.
Geliştirilen test makinesi aynı anda 10 numuneyi test edebilme özelliği sayesinde
zamandan ve enerjiden tasarruf edilebilmektedir. Yazılım ara yüzü üzerinden
yapılacak basit veri girişleri ile farklı sehim oranları (R) ve 0.1-10 Hz
frekans altında yorulma testleri yapılabilmektedir. Her bir numune için test
zamanı, test frekansı, eğme kuvveti, rijitlik kaybı, yük tekrar sayısı gibi parametreler
hem yazılım ara yüzünden hem de internet üzerinden izlenebilmektedir ve
müdahale edilebilmektedir. Numunelerinden herhangi biri hasara uğradığında
araştırmacının e-postasına uyarı mesajı ve ilgili test verilerini
gönderebilmektedir. Performans ve kalibrasyon için yapılan eğilme testlerinden
elde edilen sonuçların, literatürdeki benzerleri ile uyumlu olduğu
gözlemlenmiştir.

References

  • Abo-Elkhier, M., Hamada, A.A., ve Bahei El-Deen, A., 2014. Prediction of fatigue life of glass fiber reinforced polyester composites using modal testing. International Journal of Fatigue, 69, 28-35.
  • ASTM D671-93. (1993). Standard Test Method for Flexural Fatigue of Plastics by Constant-Amplitude-of- Force. ASTM International.
  • ASTM D7264/D7264M – 07. (2015). Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials. ASTM International.
  • Ay, İ., Sakin, R., ve Okoldan, G., 2008. An improved design of apparatus for multi-specimen bending fatigue and fatigue behaviour for laminated composites. Materials & Design, 29(2), 397–402.
  • Azzam, A., ve Li, W., 2014. An experimental investigation on the three-point bending behavior of composite laminate. IOP Conference Series: Materials Science and Engineering, 62, 012016.
  • Babu, B. S., ve Srinivas, P., 2014. Measurement Of Shear Fatigue Strength Of Fiber Glass Epoxy Laminates & Carbon Chapstan Laminates Using Fatigue Test Rig. Measurement, 4(01). Retrieved from http://www.iosrjen.org/Papers/vol4_issue1%20(part-2)/B04120515.pdf
  • Belingardi, G., ve Cavatorta, M., 2006. Bending fatigue stiffness and strength degradation in carbon–glass/epoxy hybrid laminates: Cross-ply vs. angle-ply specimens. International Journal of Fatigue, 28(8), 815–825.
  • Ben Zineb, T., Sedrakian, A., ve Billoet, J.L., 2003. An original pure bending device with large displacements and rotations for static and fatigue tests of composite structures. Composites Part B: Engineering, 34(5), 447–458.
  • Bura, V., ve Dvr, P., 2014. Testing The Flexural Fatıgue Behavior Of E-Glass Epoxy Laminates. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.671.3414&rep=rep1&type=pdf
  • Degallaix, G., Hassaı̈ni, D., ve Vittecoq, E., 2002. Cyclic shearing behaviour of a unidirectional glass/epoxy composite. International Journal of Fatigue, 24(2), 319–326.
  • Di Benedetto, H., De La Roche, C., Baaj, H., Pronk, A., ve Lundström, R., 2004. Fatigue of bituminous mixtures. Materials and Structures, 37(3), 202–216.
  • Di Franco, G., Marannano, G., Pasta, A., ve Mariotti, G. V., 2011. Design and use of a fatigue test machine in plane bending for composite specimens and bonded joints. In Advances in Composite Materials-Ecodesign and Analysis. InTech. Retrieved from http://www.intechopen.com/download/pdf/14311
  • Filatov, M.Y., 1989. A machine for fatigue testing of composite materials in pure bending. Strength of Materials, 21(4), 554–556.
  • Foong, C.-H., Wiercigroch, M., ve Deans, W. F., 2006. Novel dynamic fatigue-testing device: design and measurements. Measurement Science and Technology, 17(8), 2218–2226.
  • George, T., 2004. Development of a novel vibration-based fatigue testing methodology. International Journal of Fatigue, 26(5), 477–486.
  • Ghielmetti, C., Ghelichi, R., Guagliano, M., Ripamonti, F., ve Vezzù, S., 2011. Development of a fatigue test machine for high frequency applications. Procedia Engineering, 10, 2892–2897.
  • Hoefnagels, J.P.M., Kolluri, N., Thissen, M. H.L., van Dommelen, J.A.W., ve Geers, M. G. D., 2008. Advanced miniature mixed mode bending setup for in-situ interface delamination characterization. In Proceedings of the 11th International Congress and Exhibition on Experimental and Applied Mechanics, 2, 5. Retrieved from https://pure.tue.nl/ws/files/3532018/955888596820578.pdf
  • Kolluri, M., Thissen, M.H.L., Hoefnagels, J. P. M., Dommelen, J.A.W., ve Geers, M. G. D., 2009. In-situ characterization of interface delamination by a new miniature mixed mode bending setup. International Journal of Fracture, 158(2), 183–195.
  • Koricho, E.G., Belingardi, G., ve Beyene, A. T., 2014. Bending fatigue behavior of twill fabric E-glass/epoxy composite. Composite Structures, 111, 169–178.
  • Lai, F.-M., Yang, S.-H., Wu, J.-H., Hsueh, C.-T., Yang, C.-C., Wang, B.-H., ve Lan, C.-H., 2011. Development of Fatigue Test System for Small Composite Wind Turbine Blades. Procedia Engineering, 14, 2003–2013.
  • Mini, K.M., Lakshmanan, M., Mathew, L., ve Mukundan, M., 2012. Effect of fibre volume fraction on fatigue behaviour of glass fibre reinforced composite: VOLUME FRACTION ON FATIGUE OF GFRP. Fatigue & Fracture of Engineering Materials & Structures, 35(12), 1160–1166.
  • Mokhtarnia, B., Layeghi, M., Rasouli, S.H., ve Soltangheis, B., 2016. Development of a New Device for Bending Fatigue Testing. Journal of Testing and Evaluation, 44(4), 20140347.
  • Pach, E., Korin, I., ve Ipiña, J.P., 2012. Simple Fatigue Testing Machine for Fiber-Reinforced Polymer Composite. Experimental Techniques, 36(2), 76–82.
  • Philippidis, T.P., ve Vassilopoulos, A.P., 2002. Complex stress state effect on fatigue life of GRP laminates.: part I, experimental. International Journal of Fatigue, 24(8), 813–823.
  • Roudet, F., 2002. Fatigue of glass/epoxy composite in three-point-bending with predominant shearing. International Journal of Fatigue, 24(2–4), 327–337.
  • Sakin, R., 2015. Relationship between Barcol hardness and flexural modulus degradation of composite sheets subjected to flexural fatigue. Steel and Composite Structures, 19(6), 1531–1548.
  • Sakin, R., 2016. Fatigue-life estimation and material selection for commercial-purity aluminum sheets. Research on Engineering Structures and Materials.
  • Sakin, R., ve Ay, İ., 2008. Statistical analysis of bending fatigue life data using Weibull distribution in glass-fiber reinforced polyester composites. Materials ve Design, 29(6), 1170–1181.
  • Sakin, R., Ay, İ., ve Yaman, R., 2008. An investigation of bending fatigue behavior for glass-fiber reinforced polyester composite materials. Materials & Design, 29(1), 212–217.
  • Sakin, R., Kumru, N. ve Ay, İ., 2008. Gerilme-Kontrollü, Çok Numuneli Eğilme Yorulma Test Cihazı Tasarımı ve Kompozitler İçin Uygulama. Proceedings of 12th International Materials Symposium, (12), 531–541.
  • Selmy, A. I., Azab, N. A., ve Abd El-baky, M. A., 2013. Flexural fatigue characteristics of two different types of glass fiber/epoxy polymeric composite laminates with statistical analysis. Composites Part B: Engineering, 45(1), 518–527.
  • Shokrieh, M. M., Esmkhania, M., ve Taheri-Behrooz, F., 2014. Fatigue modeling of chopped strand mat/epoxy composites. Structural Engineering and Mechanics, 50(2), 231–240.
  • Stanzl-Tschegg, S., 2014. Very high cycle fatigue measuring techniques. International Journal of Fatigue, 60, 2–17.
  • Van Paepegem, W., ve Degrieck, J., 2002. A new coupled approach of residual stiffness and strength for fatigue of fibre-reinforced composites. International Journal of Fatigue, 24(7), 747–762.
  • Waring, G., Hofer, K. E., Brown, I., ve Trabocco, R.E., 1980. Design and operation of multi-specimen fully reversed fatigue systems for advanced composite materials. Experimental Mechanics, 20(5), 153–161.
  • Wu, J.D., Ho, S.H., Zheng, P.J., Liao, C.C. ve Hung, S.C., 2001. An experimental study of failure and fatigue life of a stacked CSP subjected to cyclic bending. In Electronic Components and Technology Conference, 2001. Proceedings., 51st (pp. 1081–1086).
  • Xue, H.-Q., Hua, T.A.O., Shao, R.-P. ve Claude, B., 2008. Effect of stress ratio on long life fatigue behavior of Ti-Al alloy under flexural loading. Transactions of Nonferrous Metals Society of China, 18(3), 499–505.
  • Yamamoto, T., Kokubu, A. ve Sakai, T., 2013. Development and several additional performances of dual spindle rotating bending fatigue testing machine GIGA QUAD. In ICF13. Retrieved from http://www.gruppofrattura.it/ocs/index.php/ICF/icf13/paper/download/11263/10642
  • Yun, G.J., Abdullah, A.B.M., ve Binienda, W., 2012. Development of a Closed-Loop High-Cycle Resonant Fatigue Testing System. Experimental Mechanics, 52(3), 275–288.
  • Zaman, W., Li, K., Li, W., Zaman, H. ve Ali, K., 2014. Flexural strength and thermal expansion of 4D carbon/carbon composites after flexural fatigue loading. New Carbon Materials, 29(3), 169–175.

Development of Fixed-End Type, multi-Sample Flexural Fatique Test Systems for Composite Plates

Year 2018, Volume: 8 Issue: 1, 1 - 17, 31.01.2018
https://doi.org/10.17714/gumusfenbil.304488

Abstract

In this study, a unique fatigue testing machine, which characterizes the
flexural fatigue behavior of fiber-reinforced composite plates, wooden plates,
plastic-based plates and light metal plates, has been developed. Fixed-end type
flexural fatigue test machine, which can be controlled by developed special
computer software, uses displacement control method for fatigue tests. Fatigue
tests are long-running mechanical tests. The developed fatigue test machine can
save time and energy under favor of the ability to test 10  samples simultaneously. Fatigue tests can be
performed under different displacement rates (R) and 0,1-1Hz frequency with
simple data entries via the software interface. 
All parameters such as test time, test frequency, bending force, loss of
stiffness, load repetition for each sample can be monitored and controlled both
in software interface and on internet. If any of the specimens are damaged, a
warning message is sent to the investigator's e-mail along with the relevant
test data. It has been observed that the results, which were obtained from the
bending tests performing for performance and calibration, are consistent with
those in the literature.

References

  • Abo-Elkhier, M., Hamada, A.A., ve Bahei El-Deen, A., 2014. Prediction of fatigue life of glass fiber reinforced polyester composites using modal testing. International Journal of Fatigue, 69, 28-35.
  • ASTM D671-93. (1993). Standard Test Method for Flexural Fatigue of Plastics by Constant-Amplitude-of- Force. ASTM International.
  • ASTM D7264/D7264M – 07. (2015). Standard Test Method for Flexural Properties of Polymer Matrix Composite Materials. ASTM International.
  • Ay, İ., Sakin, R., ve Okoldan, G., 2008. An improved design of apparatus for multi-specimen bending fatigue and fatigue behaviour for laminated composites. Materials & Design, 29(2), 397–402.
  • Azzam, A., ve Li, W., 2014. An experimental investigation on the three-point bending behavior of composite laminate. IOP Conference Series: Materials Science and Engineering, 62, 012016.
  • Babu, B. S., ve Srinivas, P., 2014. Measurement Of Shear Fatigue Strength Of Fiber Glass Epoxy Laminates & Carbon Chapstan Laminates Using Fatigue Test Rig. Measurement, 4(01). Retrieved from http://www.iosrjen.org/Papers/vol4_issue1%20(part-2)/B04120515.pdf
  • Belingardi, G., ve Cavatorta, M., 2006. Bending fatigue stiffness and strength degradation in carbon–glass/epoxy hybrid laminates: Cross-ply vs. angle-ply specimens. International Journal of Fatigue, 28(8), 815–825.
  • Ben Zineb, T., Sedrakian, A., ve Billoet, J.L., 2003. An original pure bending device with large displacements and rotations for static and fatigue tests of composite structures. Composites Part B: Engineering, 34(5), 447–458.
  • Bura, V., ve Dvr, P., 2014. Testing The Flexural Fatıgue Behavior Of E-Glass Epoxy Laminates. Retrieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.671.3414&rep=rep1&type=pdf
  • Degallaix, G., Hassaı̈ni, D., ve Vittecoq, E., 2002. Cyclic shearing behaviour of a unidirectional glass/epoxy composite. International Journal of Fatigue, 24(2), 319–326.
  • Di Benedetto, H., De La Roche, C., Baaj, H., Pronk, A., ve Lundström, R., 2004. Fatigue of bituminous mixtures. Materials and Structures, 37(3), 202–216.
  • Di Franco, G., Marannano, G., Pasta, A., ve Mariotti, G. V., 2011. Design and use of a fatigue test machine in plane bending for composite specimens and bonded joints. In Advances in Composite Materials-Ecodesign and Analysis. InTech. Retrieved from http://www.intechopen.com/download/pdf/14311
  • Filatov, M.Y., 1989. A machine for fatigue testing of composite materials in pure bending. Strength of Materials, 21(4), 554–556.
  • Foong, C.-H., Wiercigroch, M., ve Deans, W. F., 2006. Novel dynamic fatigue-testing device: design and measurements. Measurement Science and Technology, 17(8), 2218–2226.
  • George, T., 2004. Development of a novel vibration-based fatigue testing methodology. International Journal of Fatigue, 26(5), 477–486.
  • Ghielmetti, C., Ghelichi, R., Guagliano, M., Ripamonti, F., ve Vezzù, S., 2011. Development of a fatigue test machine for high frequency applications. Procedia Engineering, 10, 2892–2897.
  • Hoefnagels, J.P.M., Kolluri, N., Thissen, M. H.L., van Dommelen, J.A.W., ve Geers, M. G. D., 2008. Advanced miniature mixed mode bending setup for in-situ interface delamination characterization. In Proceedings of the 11th International Congress and Exhibition on Experimental and Applied Mechanics, 2, 5. Retrieved from https://pure.tue.nl/ws/files/3532018/955888596820578.pdf
  • Kolluri, M., Thissen, M.H.L., Hoefnagels, J. P. M., Dommelen, J.A.W., ve Geers, M. G. D., 2009. In-situ characterization of interface delamination by a new miniature mixed mode bending setup. International Journal of Fracture, 158(2), 183–195.
  • Koricho, E.G., Belingardi, G., ve Beyene, A. T., 2014. Bending fatigue behavior of twill fabric E-glass/epoxy composite. Composite Structures, 111, 169–178.
  • Lai, F.-M., Yang, S.-H., Wu, J.-H., Hsueh, C.-T., Yang, C.-C., Wang, B.-H., ve Lan, C.-H., 2011. Development of Fatigue Test System for Small Composite Wind Turbine Blades. Procedia Engineering, 14, 2003–2013.
  • Mini, K.M., Lakshmanan, M., Mathew, L., ve Mukundan, M., 2012. Effect of fibre volume fraction on fatigue behaviour of glass fibre reinforced composite: VOLUME FRACTION ON FATIGUE OF GFRP. Fatigue & Fracture of Engineering Materials & Structures, 35(12), 1160–1166.
  • Mokhtarnia, B., Layeghi, M., Rasouli, S.H., ve Soltangheis, B., 2016. Development of a New Device for Bending Fatigue Testing. Journal of Testing and Evaluation, 44(4), 20140347.
  • Pach, E., Korin, I., ve Ipiña, J.P., 2012. Simple Fatigue Testing Machine for Fiber-Reinforced Polymer Composite. Experimental Techniques, 36(2), 76–82.
  • Philippidis, T.P., ve Vassilopoulos, A.P., 2002. Complex stress state effect on fatigue life of GRP laminates.: part I, experimental. International Journal of Fatigue, 24(8), 813–823.
  • Roudet, F., 2002. Fatigue of glass/epoxy composite in three-point-bending with predominant shearing. International Journal of Fatigue, 24(2–4), 327–337.
  • Sakin, R., 2015. Relationship between Barcol hardness and flexural modulus degradation of composite sheets subjected to flexural fatigue. Steel and Composite Structures, 19(6), 1531–1548.
  • Sakin, R., 2016. Fatigue-life estimation and material selection for commercial-purity aluminum sheets. Research on Engineering Structures and Materials.
  • Sakin, R., ve Ay, İ., 2008. Statistical analysis of bending fatigue life data using Weibull distribution in glass-fiber reinforced polyester composites. Materials ve Design, 29(6), 1170–1181.
  • Sakin, R., Ay, İ., ve Yaman, R., 2008. An investigation of bending fatigue behavior for glass-fiber reinforced polyester composite materials. Materials & Design, 29(1), 212–217.
  • Sakin, R., Kumru, N. ve Ay, İ., 2008. Gerilme-Kontrollü, Çok Numuneli Eğilme Yorulma Test Cihazı Tasarımı ve Kompozitler İçin Uygulama. Proceedings of 12th International Materials Symposium, (12), 531–541.
  • Selmy, A. I., Azab, N. A., ve Abd El-baky, M. A., 2013. Flexural fatigue characteristics of two different types of glass fiber/epoxy polymeric composite laminates with statistical analysis. Composites Part B: Engineering, 45(1), 518–527.
  • Shokrieh, M. M., Esmkhania, M., ve Taheri-Behrooz, F., 2014. Fatigue modeling of chopped strand mat/epoxy composites. Structural Engineering and Mechanics, 50(2), 231–240.
  • Stanzl-Tschegg, S., 2014. Very high cycle fatigue measuring techniques. International Journal of Fatigue, 60, 2–17.
  • Van Paepegem, W., ve Degrieck, J., 2002. A new coupled approach of residual stiffness and strength for fatigue of fibre-reinforced composites. International Journal of Fatigue, 24(7), 747–762.
  • Waring, G., Hofer, K. E., Brown, I., ve Trabocco, R.E., 1980. Design and operation of multi-specimen fully reversed fatigue systems for advanced composite materials. Experimental Mechanics, 20(5), 153–161.
  • Wu, J.D., Ho, S.H., Zheng, P.J., Liao, C.C. ve Hung, S.C., 2001. An experimental study of failure and fatigue life of a stacked CSP subjected to cyclic bending. In Electronic Components and Technology Conference, 2001. Proceedings., 51st (pp. 1081–1086).
  • Xue, H.-Q., Hua, T.A.O., Shao, R.-P. ve Claude, B., 2008. Effect of stress ratio on long life fatigue behavior of Ti-Al alloy under flexural loading. Transactions of Nonferrous Metals Society of China, 18(3), 499–505.
  • Yamamoto, T., Kokubu, A. ve Sakai, T., 2013. Development and several additional performances of dual spindle rotating bending fatigue testing machine GIGA QUAD. In ICF13. Retrieved from http://www.gruppofrattura.it/ocs/index.php/ICF/icf13/paper/download/11263/10642
  • Yun, G.J., Abdullah, A.B.M., ve Binienda, W., 2012. Development of a Closed-Loop High-Cycle Resonant Fatigue Testing System. Experimental Mechanics, 52(3), 275–288.
  • Zaman, W., Li, K., Li, W., Zaman, H. ve Ali, K., 2014. Flexural strength and thermal expansion of 4D carbon/carbon composites after flexural fatigue loading. New Carbon Materials, 29(3), 169–175.
There are 40 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

H Ersen Balcıoğlu

Raif Sakin This is me

Akif Dumanay This is me

Halit Gün This is me

Publication Date January 31, 2018
Submission Date April 7, 2017
Acceptance Date August 2, 2017
Published in Issue Year 2018 Volume: 8 Issue: 1

Cite

APA Balcıoğlu, H. E., Sakin, R., Dumanay, A., Gün, H. (2018). Kompozit Levhalar için Ankastre-Tip Eğilmeli, Çok Numuneli Yorulma Test Makinesinin Geliştirilmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 8(1), 1-17. https://doi.org/10.17714/gumusfenbil.304488

Cited By

The Effect of Different Environmental Condition on Flexural Strength and Fatigue Behavior of E-Glass/Epoxy Composites
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering
H. Ersen Balcıoğlu
https://doi.org/10.1007/s40997-020-00397-y