Review
BibTex RIS Cite

Betonun Darbe Dayanımının Tespitinde Ağırlık Düşürme Deney Yöntemi ve Yapılan Çalışmalar

Year 2018, Volume: 8 Issue: 1, 155 - 163, 31.01.2018
https://doi.org/10.17714/gumusfenbil.318540

Abstract

Son yıllarda kullanım ömrü boyunca darbe etkilerine
maruz kalabilecek yapıların performanslarının artırılabilmesi üzerinde
çalışmaların sayısı artış göstermiştir. 
Darbe dayanımı konusunda malzeme özellikleri üzerinde yapılan çalışmalar
ve test yöntemleri önem kazanmaktadır. 
Malzeme açısından darbe dayanımını artırabilecek bileşenler, katkılar ve
oranları alanında yapılan çalışmaların yanısıra uygulanan yöntemler arasında en
çok kullanılan test yöntemi olarak ağırlık düşürme deneyi dikkat çekmektedir.
Çalışmamızda darbe dayanımı ve tespiti konularında yapılan çalışmalar
özetlenerek sonra yapılacak çalışmalar için önerilerde bulunulmuştur.

References

  • ACI 544.2R, 2009. Measurement of Properties of Fiber Reinforced Concrete, USA.
  • Aliabdo, A.A., Abd-Elmoaty, A.M. ve Hamdy, M., 2013. Effect of Internal Short Fibers, Steel Reinforcement and Surface Layer on Impact and Penetration Resistance of Concrete, Alexandria Engineering Journal, 52, 407-417.
  • Al-Tayeb, M.M., Abu-Bakar, B.H., Ismail, H. ve Akil, H.M., 2013. Effect of Partial Replacement of Sand by Recycled Fine Crumb Rubber on the Performance of Hybrid Rubberized Normal Concrete Under Impact Load Experiment and Simulation, Journal of Cleaner Production, 59, 284-289.
  • Badr, A., Ashour, A.F. ve Platten, A.K., 2005. Statistical Variations in Impact Resistance of Polypropylene Fibre Reinforced Concrete, International Journal of Impact Engineering, 32, 1907-1920.
  • Banthia, N., Yan, C. ve Sakai, K., 1998. Impact Resistance of Fiber Reinforced Concrete at Subnormal Temperatures, Cement and Concrete Composites, 20, 393-404.
  • Baradan, B., Yazıcı, H. ve Ün, H., 2010, Beton ve Betonarme Yapılarda Kalıcılık, Türkiye Hazır Beton Birliği, ISBN 975-92122-2-6, İstanbul, 318s.
  • Caf, M. ve Bingöl, A.F., 2012. Polipropilen ve Çelik Lifli Betonların Darbe Dayanımı, Yüksek Lisans Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum.
  • Çanakçı, A., 2016. KTÜ Metalurji ve Malzeme Mühendisliği Deney Föyü.
  • Erdem, S., Dawson, A.R. ve Thom, N.H., 2011. Microstructure Linked Strength Properties and Impact Response of Conventional and Recycled Concrete Reinforced with Steel and Synthetic Macro Fibers, Construction and Building Materials, 25, 4025-4036.
  • Foti, D. ve Paparella, F., 2014. Impact Behavior of Structural Elements in Concrete Reinforced with PET Grids, Mechanics Research Communications, 57, 57-66.
  • Gupta, T., Sharma, R.K. ve Chaudhary, S., 2015. Impact Resistance of Concrete Containing Waste Rubber Fiber and Silica Fume, International Journal of Impact Engineering, 83, 76-87.
  • Khalil, E., Abd-Elmohsen, M. ve Anwar, A.M., 2015. Impact Resistance of Rubberized Self Compacting Concrete, Water Science, 29, 45-53.
  • Marar, K., Eren, Ö. ve Çelik, T., 2001. Relationship Between Impact Energy and Compression Toughness Energy of High-Strenght Fiber-Reinforced Concrete. Materials Letters, 47, 297-304.
  • Mindess, S., Banthia, N. ve Bentur, A., 1986. The Response of Reinforced Concrete Beams with a Fibre Concrete Matrix to Impact Loading, The International Journal of Cement Composites and Lightweight Concrete, 8, 165-170.
  • Mindess, S. ve Vondran, G., 1988. Properties of Concrete Reinforced with Fibrillated Polypropylene Fibres Under Impact Loading, Cement and Concrete Research, 18, 109-115.
  • Mindess, S. ve Yan, C., 1993. Perforation of Plain and Fibre Reinforced Concretes Subjected to Low Velocity Impact Loading, Cement and Concrete Research, 23, 83-92.
  • Mohammadi, Y., Azad, R.C., Singh, S.P. ve Kaushik, S.K., 2008. Impact Resistance of Steel Fibrous Concrete Containing Fibres of Mixed Aspect Ratio, Construction and Building Materials, 23, 183-189.
  • Nataraja, M.C., Dhang, N. ve Gupta, A.P., 1999. Statistical Variations in Impact Resistance of Steel Fiber Reinforced Concrete Subjected to Drop Weight Test, Cement and Concrete Research, 29, 989-995.
  • Nataraja, M.C., Nagaraj, T.S. ve Basavaraja, S.B., 2005. Reproportioning of Steel Fibre Reinforced Concrete Mixes and Their Impact Resistance, Cement and Concrete Research, 35, 2350-2359.
  • Nia, A.A., Hedeyatian, M., Nili, M. ve Afroughsabet, V., 2012. An Experimental and Numerical Study on How Steel and Polypropylene Fibers Affect the Impact Resistance in Fiber Reinforced Concrete, International Journal of Impact Engineering, 46, 62-73.
  • Nili, M. ve Afroughsabet, V., 2010a. Combined Effect of Silica Fume and Steel Fibers on the Impact Resistance and Mechanical Properties of Concrete, International Journal of Impact Engineering, 37, 879-886.
  • Nili, M. ve Afroughsabet V., 2010b. The Effects of Silica Fume and Polypropylene Fibers on the Impact Resistance and Mechanical Properties of Concrete, Construction and Building Materials, 24, 927-933.
  • Ranjan, R., Banerjee, S., Singh, R.K. ve Banerji, P., 2014. Local Impact Effects on Concrete Target Due to Missile an Empirical and Numerical Approach, Annals of Nuclear Energy, 68, 262-275.
  • Ramakrishna, G. ve Sundararajan, T., 2005. Impact Strenght of a few Natural Fibre Reinforced Cement Mortar Slabs: A Comparative Study, Cement and Concrete Composites, 27, 547-553.
  • Rao, M.C., Bhattacharyya, S.K. ve Barai, S.V., 2011. Behaivour of recycled aggregate concrete under drop weight impact load, Construction and Building Materials, 25, 69- 80.
  • Song, P.S., Wu, J.C., Hwang, S. ve Sheu, B.C., 2005. Assessment of Statistical Variations in Impact Resistance of High Strength Concrete and High Strength Steel Fiber Reinforced Concrete, Cement and Concrete Research, 35, 393-399.
  • Su, H. ve Xu, J., 2013. Dynamic Compressive Behavior of Ceramic Fiber Reinforced Concrete Under Impact Load, Construction and Building Materials, 45, 306-313.
  • Swamy, R.N. ve Jojagha, A.H., 1982. Impact Resistance of Steel Fibre Reinforced Lightweight Concrete, The International Journal of Cement Composites and Lightweight Concrete, 4, 209-220.
  • Toutanji, H., McNeil, S. ve Bayasi, Z., 1998. Chloride Permeability and Impact Resistance of Polypropylene Fiber Reinforced Silica Fume Concrete, Cement and Concrete Research, 28, 961-968.
  • Wan, F., Jiang, Z., Tan, Q. ve Cao, Y., 2016. Response of Steel Tube Confined Concrete Targets to Projectile Impact, International Journal of Impact Engineering, 94, 50-59.
  • Wang, N., Mindess, S. ve Ko, K., 1996. Fibre Reinforced Concrete Beams Under Impact Loading, Cement and Concrete Research, 26, 363-376.
  • Xiao, J., Li, L., Shen, L. ve Poon, C.S., 2015. Compressive Behavior of Recycled Aggregate Concrete Under Impact Loading, Cement and Concrete Research, 71, 46-55.
  • Xu, B., Toutanji, H.A. ve Gilbert, J., 2010. Impact Resistance of Polyvinyl Alcohol Fiber Reinforced High Performance Organic Aggregate Cementitious Material, Cement and Concrete Research, 40, 347-351.
  • Yazıcı, Ş. ve Sezer, G.İ., 2008. Çelik Lifli Betonların Darbe Direncine Agrega Maksimum Boyutunun Etkisi, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 14, 237-245.
  • Zeynal, E. ve Yazıcı, Ş., 2008. Çelik Lif ve S/Ç Oranlarının Çelik Lifli Betonların Darbe Mukavemetine ve Mekanik Özelliklerine Etkisi. Yüksek Lisans Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir.

The Drop Weight Test Method to Determine Impact Strength of Concrete and A Review of Research

Year 2018, Volume: 8 Issue: 1, 155 - 163, 31.01.2018
https://doi.org/10.17714/gumusfenbil.318540

Abstract

In recent years, the number of studies about increasing the
performances of structures that may be exposed to impact effects during their
lifetime has increased. Works on the material properties and test methods are
getting important on the impact resistance. In addition to the studies in the
field of components, additives and ratios that can increase the impact
resistance in terms of material, one of the simple and highly preferred test
method is drop weight test. In this review paper, investigations about impact resistance
are summarized and some suggestions have been developed for future works.

References

  • ACI 544.2R, 2009. Measurement of Properties of Fiber Reinforced Concrete, USA.
  • Aliabdo, A.A., Abd-Elmoaty, A.M. ve Hamdy, M., 2013. Effect of Internal Short Fibers, Steel Reinforcement and Surface Layer on Impact and Penetration Resistance of Concrete, Alexandria Engineering Journal, 52, 407-417.
  • Al-Tayeb, M.M., Abu-Bakar, B.H., Ismail, H. ve Akil, H.M., 2013. Effect of Partial Replacement of Sand by Recycled Fine Crumb Rubber on the Performance of Hybrid Rubberized Normal Concrete Under Impact Load Experiment and Simulation, Journal of Cleaner Production, 59, 284-289.
  • Badr, A., Ashour, A.F. ve Platten, A.K., 2005. Statistical Variations in Impact Resistance of Polypropylene Fibre Reinforced Concrete, International Journal of Impact Engineering, 32, 1907-1920.
  • Banthia, N., Yan, C. ve Sakai, K., 1998. Impact Resistance of Fiber Reinforced Concrete at Subnormal Temperatures, Cement and Concrete Composites, 20, 393-404.
  • Baradan, B., Yazıcı, H. ve Ün, H., 2010, Beton ve Betonarme Yapılarda Kalıcılık, Türkiye Hazır Beton Birliği, ISBN 975-92122-2-6, İstanbul, 318s.
  • Caf, M. ve Bingöl, A.F., 2012. Polipropilen ve Çelik Lifli Betonların Darbe Dayanımı, Yüksek Lisans Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum.
  • Çanakçı, A., 2016. KTÜ Metalurji ve Malzeme Mühendisliği Deney Föyü.
  • Erdem, S., Dawson, A.R. ve Thom, N.H., 2011. Microstructure Linked Strength Properties and Impact Response of Conventional and Recycled Concrete Reinforced with Steel and Synthetic Macro Fibers, Construction and Building Materials, 25, 4025-4036.
  • Foti, D. ve Paparella, F., 2014. Impact Behavior of Structural Elements in Concrete Reinforced with PET Grids, Mechanics Research Communications, 57, 57-66.
  • Gupta, T., Sharma, R.K. ve Chaudhary, S., 2015. Impact Resistance of Concrete Containing Waste Rubber Fiber and Silica Fume, International Journal of Impact Engineering, 83, 76-87.
  • Khalil, E., Abd-Elmohsen, M. ve Anwar, A.M., 2015. Impact Resistance of Rubberized Self Compacting Concrete, Water Science, 29, 45-53.
  • Marar, K., Eren, Ö. ve Çelik, T., 2001. Relationship Between Impact Energy and Compression Toughness Energy of High-Strenght Fiber-Reinforced Concrete. Materials Letters, 47, 297-304.
  • Mindess, S., Banthia, N. ve Bentur, A., 1986. The Response of Reinforced Concrete Beams with a Fibre Concrete Matrix to Impact Loading, The International Journal of Cement Composites and Lightweight Concrete, 8, 165-170.
  • Mindess, S. ve Vondran, G., 1988. Properties of Concrete Reinforced with Fibrillated Polypropylene Fibres Under Impact Loading, Cement and Concrete Research, 18, 109-115.
  • Mindess, S. ve Yan, C., 1993. Perforation of Plain and Fibre Reinforced Concretes Subjected to Low Velocity Impact Loading, Cement and Concrete Research, 23, 83-92.
  • Mohammadi, Y., Azad, R.C., Singh, S.P. ve Kaushik, S.K., 2008. Impact Resistance of Steel Fibrous Concrete Containing Fibres of Mixed Aspect Ratio, Construction and Building Materials, 23, 183-189.
  • Nataraja, M.C., Dhang, N. ve Gupta, A.P., 1999. Statistical Variations in Impact Resistance of Steel Fiber Reinforced Concrete Subjected to Drop Weight Test, Cement and Concrete Research, 29, 989-995.
  • Nataraja, M.C., Nagaraj, T.S. ve Basavaraja, S.B., 2005. Reproportioning of Steel Fibre Reinforced Concrete Mixes and Their Impact Resistance, Cement and Concrete Research, 35, 2350-2359.
  • Nia, A.A., Hedeyatian, M., Nili, M. ve Afroughsabet, V., 2012. An Experimental and Numerical Study on How Steel and Polypropylene Fibers Affect the Impact Resistance in Fiber Reinforced Concrete, International Journal of Impact Engineering, 46, 62-73.
  • Nili, M. ve Afroughsabet, V., 2010a. Combined Effect of Silica Fume and Steel Fibers on the Impact Resistance and Mechanical Properties of Concrete, International Journal of Impact Engineering, 37, 879-886.
  • Nili, M. ve Afroughsabet V., 2010b. The Effects of Silica Fume and Polypropylene Fibers on the Impact Resistance and Mechanical Properties of Concrete, Construction and Building Materials, 24, 927-933.
  • Ranjan, R., Banerjee, S., Singh, R.K. ve Banerji, P., 2014. Local Impact Effects on Concrete Target Due to Missile an Empirical and Numerical Approach, Annals of Nuclear Energy, 68, 262-275.
  • Ramakrishna, G. ve Sundararajan, T., 2005. Impact Strenght of a few Natural Fibre Reinforced Cement Mortar Slabs: A Comparative Study, Cement and Concrete Composites, 27, 547-553.
  • Rao, M.C., Bhattacharyya, S.K. ve Barai, S.V., 2011. Behaivour of recycled aggregate concrete under drop weight impact load, Construction and Building Materials, 25, 69- 80.
  • Song, P.S., Wu, J.C., Hwang, S. ve Sheu, B.C., 2005. Assessment of Statistical Variations in Impact Resistance of High Strength Concrete and High Strength Steel Fiber Reinforced Concrete, Cement and Concrete Research, 35, 393-399.
  • Su, H. ve Xu, J., 2013. Dynamic Compressive Behavior of Ceramic Fiber Reinforced Concrete Under Impact Load, Construction and Building Materials, 45, 306-313.
  • Swamy, R.N. ve Jojagha, A.H., 1982. Impact Resistance of Steel Fibre Reinforced Lightweight Concrete, The International Journal of Cement Composites and Lightweight Concrete, 4, 209-220.
  • Toutanji, H., McNeil, S. ve Bayasi, Z., 1998. Chloride Permeability and Impact Resistance of Polypropylene Fiber Reinforced Silica Fume Concrete, Cement and Concrete Research, 28, 961-968.
  • Wan, F., Jiang, Z., Tan, Q. ve Cao, Y., 2016. Response of Steel Tube Confined Concrete Targets to Projectile Impact, International Journal of Impact Engineering, 94, 50-59.
  • Wang, N., Mindess, S. ve Ko, K., 1996. Fibre Reinforced Concrete Beams Under Impact Loading, Cement and Concrete Research, 26, 363-376.
  • Xiao, J., Li, L., Shen, L. ve Poon, C.S., 2015. Compressive Behavior of Recycled Aggregate Concrete Under Impact Loading, Cement and Concrete Research, 71, 46-55.
  • Xu, B., Toutanji, H.A. ve Gilbert, J., 2010. Impact Resistance of Polyvinyl Alcohol Fiber Reinforced High Performance Organic Aggregate Cementitious Material, Cement and Concrete Research, 40, 347-351.
  • Yazıcı, Ş. ve Sezer, G.İ., 2008. Çelik Lifli Betonların Darbe Direncine Agrega Maksimum Boyutunun Etkisi, Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 14, 237-245.
  • Zeynal, E. ve Yazıcı, Ş., 2008. Çelik Lif ve S/Ç Oranlarının Çelik Lifli Betonların Darbe Mukavemetine ve Mekanik Özelliklerine Etkisi. Yüksek Lisans Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir.
There are 35 citations in total.

Details

Subjects Engineering
Journal Section Articles
Authors

Meral Oltulu 0000-0002-3779-6888

M.gökhan Altun This is me

Publication Date January 31, 2018
Submission Date June 3, 2017
Acceptance Date November 29, 2017
Published in Issue Year 2018 Volume: 8 Issue: 1

Cite

APA Oltulu, M., & Altun, M. (2018). Betonun Darbe Dayanımının Tespitinde Ağırlık Düşürme Deney Yöntemi ve Yapılan Çalışmalar. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 8(1), 155-163. https://doi.org/10.17714/gumusfenbil.318540