Research Article
BibTex RIS Cite

The Effect of Micronutrients on The Development and Food Consumption of Agelastica alni (Coleoptera:Chrysomelidae) Larvae

Year 2019, Volume: 9 Issue: 1, 55 - 63, 15.01.2019
https://doi.org/10.17714/gumusfenbil.402611

Abstract

In this study, the effect of micronutrients on food consumption and
development of Agelastica alni larvae
was investigated. The pupa dry weight, the amount of pupa crude protein, the
amount of pupa lipid and the developmental periods were taken into
consideration in order to examine the development of larvae. Eight different
artificial diets were prepared by increasing or decreasing the concentrations
of the vitamin mixture (V) and salt mixture (T) by 100 %, 50 %, and removing
the salt mixture or vitamin mixture from some diets. The larvae were fed
individually in each dietary group and feeding experiments were performed in 10
replications. It has been determined that the highest consumption of diets is V
/ 0.5T and the lowest consumption is 0.5V / T. A statistically significant
negative correlation was found between salt concentration of diet and
consumption and a positive correlation was found between vitamin concentrations
of diet. A relationship between salt or vitamin concentrations of diet and pupa
dry weight has not been established. A weak relationship was found between
consumption amount and pupa crude protein amount. The salt concentration of the
diet affects the amount of pupa lipid in the negative correlation, while the
vitamin concentration affects the positive correlation. When the developmental
stages of larvae for different diets were examined, the longest larval period
was observed for the larvae fed on the V / -T diet and the shortest larval
period was observed for the larvae fed on the 2V / T diet. As the vitamin
concentration of the diet increases, the duration
of development is shortened. As the
length of development increases, the pupa dry weight and pupa lipid amount decrease.

References

  • Ahsan, MK., Khan, A.R. ve Ferdous, T., 2013. Growth and development of the mulberry silkworm, Bombyx mori L. on vitamin B and C supplemented diet. Bangladesh Journal of Zoology, 41 (2), 199-206.
  • Allen, S. E. , Grimshaw, H. M., Parkinson, J. A., Quarmby, C. ve Roberts, J. D.,1986. Chemical Analysis. In: Champman, S.B. (eds), Methods in plant Ecology. Blackwell Scientific Puplications, Oxford, pp. 411-466.
  • Barbehenn, R.V., Knister, J., Marsik, F., Jahant-Miller, C. ve Nham, W., 2015. Nutrients are assimilated efficiently by Lymantria dispar caterpillars from the mature leaves of trees in the Salicaceae. Physiological Entomology, 40, 72-81, doi: 10.1111/phen.12087. Chang, C.L., Kurashima, R. ve Albrecht, C., 2000. Effect of limiting concentrations of growth factors in mass rearing diets for Ceratitis capitata larvae (Diptera: Tephritidae). Annals of The Entomological Society of America, 93 (4), 898-903.
  • Chang, C.L ve Li, Q.X., 2004. Dosage effects between dietary niacin and other B vitamins on larval development of Ceratitis capitata (Diptera: Tephritidae). Annals of The Entomological Society of America, 97(3), 536-540.
  • Deletre, E., Schatz, B., Bourguet, D., Chandre, F., Williams, L., Ratnadass, A. ve Martin, T., 2016. Prospects for repellent in pest control: current developments and future challenges. Chemoecology, 26, 127-142, doi: 10.1007/s00049-016-0214-0.
  • Etebari, K. ve Matindoost, L., 2004. Effects of hypervitaminosis of vitamin B3 on silkworm biology. Journal of Biosciences, 29 (4), 417-422.
  • Etebari, K. ve Matindoost, L., 2005., Application of multi-vitamins as supplementary nutrients on biological and economical characteristics of silkworm Bombyx mori L. Journal of Asia-Pasific Entomology, 8 (1), 107-112.
  • Firidin, B. ve Mutlu, C., 2009. Nitrogen utilization pattern and degradation capability of some plant secondary metabolites by Agelastica alni L. (Coleoptera: Chrysomelidae). Journal of Entomological Research Society, 11 (2), 1-15.
  • Genç, H., 2006. General principles of insect nutritional ecology. Trakya University Journal of Natural Sciences, 7 (1), 53-57.
  • Gordon, H.T., 1968. Quantitative aspects of insect nutrition. American Zoologist, 8, 131-138.
  • Jensen, K., Mayntz, D., Wang, T., Simpson, S.J., ve Overgaad, J., 2010. Metabolic consequences of feeding and fasting on nutritionally different diets in the wolf spider Pardosa prativaga. Journal of Insect Physiology, 56, 1095-1100, doi:10.1016/j.jinsphys.2010.03.001.
  • Jensen, K., Mayntz, D., Toft, S., Clissold, F.J., Hunt, J. Raubenheimer, D. ve Simpson, S.J., 2012. Optimal foraging for specific nutrients in predatory beetles. Proceedings of The Royal Society B / Biological Sciences, 279, 2212-2218, doi: 10.1098/rspb.2011.2410.
  • Jose, B.K., Sudheendrakumar, V.V. ve Sajeev, T.V., 2014. Micronutrients - Significance and function in growth and survival of insects – A case study. Entomology and Applied Science Letters, 1 (3), 1-4.
  • LoPresti, E. F., 2014. Chenopod salt bladders deter insect herbivores. Oecologia, 174, 921-930, doi: 10.1007/s00442-013-2827-0.
  • Oonincx, D.A.G.B., van Broekhoven, S. van Huis, A., van Loon, J.J.A., 2015. Feed conversion, survival and development and composition of four insect species on diets composed of food by-products. PLoS One, 10 (12), 1-20, doi:10.1371/ journal.pone.0144601. Pontes, G., Pereira, M.H. ve Barrozo, R.B., 2017. Salt controls feeding decisions in a blood-sucking insect. Journal of Insect Physiology, 98, 93-100, doi: 10.1016/j.jinsphys.2016.12.002 0022-1910.
  • Schoonhoven, L.M., Blaney, W.M. ve Simmonds, M.S.J., 1992. Sensory coding of feeding deterrents in phytophagous insects. In: Bernays, E.A. (eds) Insect-Plant Interactions, Boca Raton, FL: CRC, 4, pp. 59–79.
  • Senior, A.M., Charleston, M.A., Lihoreau, M., Buhl, J., Raubenheimer, D. ve Simpson, S.J., 2015. Evolving nutritional strategies in the presence of competition: A geometric agent based model. PLOS Computational Biology, 11, 3, 1-24, doi:10.1371/journal.pcbi.1004111.
  • Simpson, S.J. ve Raubenheimer, D., 2001. The geometric analysis of nutrient–allelochemical interactions: a case study using locusts. Ecology, 82, 422–439.
  • Trumper, S. ve Simpson, S.J., 1993. Regulation of salt intake by nymphs of Locusta migratoria. Journal of Insect Physiology, 39 (10), 857-864.
  • Wang, Y.C., Zhang, S.K., Ren, X.B. ve Su, J., 2014. Effects of dietary additives in artificial diets on survival and larval development of Cnaphalocrocis medinalis (Lepidoptera: Crambidae). Florida Entomologist Society, 97(3), 1041-1048, doi: 10.1653/024.097.0306.
  • Yamamoto, R. T., 1969. Mass rearing of tobacco hornworm. II. Larval rearing and pupation. Journal of Economic Entomology, 62, 1427-1431.
  • Yanar, O., 2013. Agelastica alni (L.) (Coleoptera: Chrysomelidae) Larvalarının Beslenme ve Gelişimine Besin Kalitesi ve Tanik Asitin Etkisi. Karadeniz Fen Bilimleri Dergisi / The Black Sea Journal of Sciences, 3(9), 81-90.

Agelastica alni L. (Coleoptera:Chrysomelidae) Larvalarının Besin Tüketimi ve Gelişiminde Mikrogıdaların Etkisi

Year 2019, Volume: 9 Issue: 1, 55 - 63, 15.01.2019
https://doi.org/10.17714/gumusfenbil.402611

Abstract

Bu çalışmada Agelastica alni
larvalarının besin tüketim miktarı ve gelişimi üzerine mikrogıdaların etkisi araştırılmıştır.
Larvaların gelişimini inceleyebilmek için pupa kuru ağırlığı, pupa ham protein
miktarı, pupa lipit miktarı ve gelişim süreleri dikkate alınmıştır. Vitamin karışımı (V) ve tuz karışımı (T)
konsantrasyonları % 100, % 50 oranlarında artırılarak veya azaltılarak, bazı
diyetlerden ise tuz karışımı veya vitamin karışımı çıkarılarak sekiz farklı
yapay diyet hazırlanmıştır. Larvalar her bir diyet grubunda teker teker
beslenmişlerdir ve 10 tekrar olacak şekilde beslenme deneyleri
gerçekleştirilmiştir. Diyetler arasında en fazla tüketim miktarının V/0.5T
içeren diyette, en az tüketim miktarının ise 0.5V/T içeren diyette olduğu
tespit edilmiştir. Diyetteki tuz konsantrasyonu ile besin tüketimi arasında
istatistiksel olarak anlamlı negatif yönlü bir ilişki, vitamin konsantrasyonu
arasında ise pozitif yönlü bir ilişki belirlenmiştir. Diyetin tuz ya da vitamin
konsantrasyonları ile pupa kuru ağırlığı arasında bir ilişki belirlenememiştir.
Tüketim miktarı ile pupa ham protein miktarı arasında ise zayıf bir ilişki
tespit edilmiştir. Diyetteki tuz konsantrasyonu pupa lipit miktarını negatif
yönde etkilerken, vitamin konsantrasyonu pozitif yönde etkilemektedir.
Larvaların farklı diyetlerdeki gelişim süreleri incelendiğinde en uzun larva
dönemi V/-T diyetinde beslenen larvalarda, en kısa larva dönemi ise 2V/T diyetinde
beslenen larvalarda gözlenmiştir. Diyetin vitamin konsantrasyonu arttıkça
gelişim süresinin kısaldığı belirlenmiştir. Gelişim süresi uzadıkça pupa kuru
ağırlığı ve pupa lipit miktarı azalmaktadır. 

References

  • Ahsan, MK., Khan, A.R. ve Ferdous, T., 2013. Growth and development of the mulberry silkworm, Bombyx mori L. on vitamin B and C supplemented diet. Bangladesh Journal of Zoology, 41 (2), 199-206.
  • Allen, S. E. , Grimshaw, H. M., Parkinson, J. A., Quarmby, C. ve Roberts, J. D.,1986. Chemical Analysis. In: Champman, S.B. (eds), Methods in plant Ecology. Blackwell Scientific Puplications, Oxford, pp. 411-466.
  • Barbehenn, R.V., Knister, J., Marsik, F., Jahant-Miller, C. ve Nham, W., 2015. Nutrients are assimilated efficiently by Lymantria dispar caterpillars from the mature leaves of trees in the Salicaceae. Physiological Entomology, 40, 72-81, doi: 10.1111/phen.12087. Chang, C.L., Kurashima, R. ve Albrecht, C., 2000. Effect of limiting concentrations of growth factors in mass rearing diets for Ceratitis capitata larvae (Diptera: Tephritidae). Annals of The Entomological Society of America, 93 (4), 898-903.
  • Chang, C.L ve Li, Q.X., 2004. Dosage effects between dietary niacin and other B vitamins on larval development of Ceratitis capitata (Diptera: Tephritidae). Annals of The Entomological Society of America, 97(3), 536-540.
  • Deletre, E., Schatz, B., Bourguet, D., Chandre, F., Williams, L., Ratnadass, A. ve Martin, T., 2016. Prospects for repellent in pest control: current developments and future challenges. Chemoecology, 26, 127-142, doi: 10.1007/s00049-016-0214-0.
  • Etebari, K. ve Matindoost, L., 2004. Effects of hypervitaminosis of vitamin B3 on silkworm biology. Journal of Biosciences, 29 (4), 417-422.
  • Etebari, K. ve Matindoost, L., 2005., Application of multi-vitamins as supplementary nutrients on biological and economical characteristics of silkworm Bombyx mori L. Journal of Asia-Pasific Entomology, 8 (1), 107-112.
  • Firidin, B. ve Mutlu, C., 2009. Nitrogen utilization pattern and degradation capability of some plant secondary metabolites by Agelastica alni L. (Coleoptera: Chrysomelidae). Journal of Entomological Research Society, 11 (2), 1-15.
  • Genç, H., 2006. General principles of insect nutritional ecology. Trakya University Journal of Natural Sciences, 7 (1), 53-57.
  • Gordon, H.T., 1968. Quantitative aspects of insect nutrition. American Zoologist, 8, 131-138.
  • Jensen, K., Mayntz, D., Wang, T., Simpson, S.J., ve Overgaad, J., 2010. Metabolic consequences of feeding and fasting on nutritionally different diets in the wolf spider Pardosa prativaga. Journal of Insect Physiology, 56, 1095-1100, doi:10.1016/j.jinsphys.2010.03.001.
  • Jensen, K., Mayntz, D., Toft, S., Clissold, F.J., Hunt, J. Raubenheimer, D. ve Simpson, S.J., 2012. Optimal foraging for specific nutrients in predatory beetles. Proceedings of The Royal Society B / Biological Sciences, 279, 2212-2218, doi: 10.1098/rspb.2011.2410.
  • Jose, B.K., Sudheendrakumar, V.V. ve Sajeev, T.V., 2014. Micronutrients - Significance and function in growth and survival of insects – A case study. Entomology and Applied Science Letters, 1 (3), 1-4.
  • LoPresti, E. F., 2014. Chenopod salt bladders deter insect herbivores. Oecologia, 174, 921-930, doi: 10.1007/s00442-013-2827-0.
  • Oonincx, D.A.G.B., van Broekhoven, S. van Huis, A., van Loon, J.J.A., 2015. Feed conversion, survival and development and composition of four insect species on diets composed of food by-products. PLoS One, 10 (12), 1-20, doi:10.1371/ journal.pone.0144601. Pontes, G., Pereira, M.H. ve Barrozo, R.B., 2017. Salt controls feeding decisions in a blood-sucking insect. Journal of Insect Physiology, 98, 93-100, doi: 10.1016/j.jinsphys.2016.12.002 0022-1910.
  • Schoonhoven, L.M., Blaney, W.M. ve Simmonds, M.S.J., 1992. Sensory coding of feeding deterrents in phytophagous insects. In: Bernays, E.A. (eds) Insect-Plant Interactions, Boca Raton, FL: CRC, 4, pp. 59–79.
  • Senior, A.M., Charleston, M.A., Lihoreau, M., Buhl, J., Raubenheimer, D. ve Simpson, S.J., 2015. Evolving nutritional strategies in the presence of competition: A geometric agent based model. PLOS Computational Biology, 11, 3, 1-24, doi:10.1371/journal.pcbi.1004111.
  • Simpson, S.J. ve Raubenheimer, D., 2001. The geometric analysis of nutrient–allelochemical interactions: a case study using locusts. Ecology, 82, 422–439.
  • Trumper, S. ve Simpson, S.J., 1993. Regulation of salt intake by nymphs of Locusta migratoria. Journal of Insect Physiology, 39 (10), 857-864.
  • Wang, Y.C., Zhang, S.K., Ren, X.B. ve Su, J., 2014. Effects of dietary additives in artificial diets on survival and larval development of Cnaphalocrocis medinalis (Lepidoptera: Crambidae). Florida Entomologist Society, 97(3), 1041-1048, doi: 10.1653/024.097.0306.
  • Yamamoto, R. T., 1969. Mass rearing of tobacco hornworm. II. Larval rearing and pupation. Journal of Economic Entomology, 62, 1427-1431.
  • Yanar, O., 2013. Agelastica alni (L.) (Coleoptera: Chrysomelidae) Larvalarının Beslenme ve Gelişimine Besin Kalitesi ve Tanik Asitin Etkisi. Karadeniz Fen Bilimleri Dergisi / The Black Sea Journal of Sciences, 3(9), 81-90.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mustafa Tokgöz This is me 0000-0001-7234-5719

Nurver Altun 0000-0002-2657-9263

Publication Date January 15, 2019
Submission Date March 6, 2018
Acceptance Date June 14, 2018
Published in Issue Year 2019 Volume: 9 Issue: 1

Cite

APA Tokgöz, M., & Altun, N. (2019). Agelastica alni L. (Coleoptera:Chrysomelidae) Larvalarının Besin Tüketimi ve Gelişiminde Mikrogıdaların Etkisi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 9(1), 55-63. https://doi.org/10.17714/gumusfenbil.402611