Research Article
BibTex RIS Cite

Karacasu Fayı’nın (GB Türkiye) Göreceli Tektonik Aktivitesinin Jeomorfik İndislerle İncelenmesi

Year 2019, Volume: 9 Issue: 1, 37 - 48, 15.01.2019
https://doi.org/10.17714/gumusfenbil.409561

Abstract

Ege genişleme
sistemindeki KB gidişli havzalardan birisi olan Karacasu Havzası, Büyük
Menderes Grabeni’ni eğik olarak kesmektedir. Karacasu Havzası yaklaşık 30 km
uzunluğa ve 10 km genişliğe sahip bir yarı graben şeklinde gelişmiştir. Grabeni
GB’dan sınırlayan fay, Karacasu Fayı olarak adlandırılmaktadır. Neojen öncesi
temel Menderes Masifi’nin gnays ve şistlerinden oluşur. Bu metamorfik temel
üzerine  havza kenarları boyunca
çakıltaşı ve kumtaşları, havza merkezinde ise çamurtaşları ve kireçtaşları ile
temsil edilen Miyo-Pliyosen yaşlı havza dolgusu uyumsuz olarak gelir. Üstte en
genç olan birim Karacasu Formasyonu’nun Kuvaterner yaşlı kaba kırıntıları yer
alır. Karacasu Fayı’nın gidişi, devamlılığı ve geometrisi dikkate alınarak,
Çamköy ve Yazır olmak üzere iki ayrı segmente ayrılır. KB gidişli Karacasu Fayı,
dağ önü sinüslülük oranı (Smf), vadi tabanı genişliği-yüksekliği oranı (Vf), akarsu
uzunluk-gradyan indisi (SL), havza asimetri faktörü (AF), hipsometrik eğri ve
integral (Hi) ve drenaj havzası şekli (Bs) indisleri yanı sıra, 12.5 m
çözünürlüklü sayısal yükseklik modeli  (SYM)
kullanılarak hesaplanmıştır. Hesaplanan bu indislerin ortalaması kullanılarak
göreceli tektonik aktivite (Iat) indisi elde edilmiştir. Elde edilen Iat indisi
verileri, Çamköy ve Yazır segmentlerinin KB uçlarında çok yüksek, diğer
bölümlerinde ise yüksek tektonik aktivite durumuna işaret etmektedir. Segmentlerin
uzunluğu ve bölgedeki eski depremler, Karacasu Fayı’nın yakın gelecekte M6 veya
üzeri büyüklükte deprem üretme potansiyeline sahip olduğunu göstermektedir.

References

  • Açıkalın, S., 2005. Sedimentary evolution of the Karacasu cross-graben (Aydın, West Anatolia). MSc, Eskişehir Osmangazi University, Eskişehir, Turkey (in Turkish with English abstract).
  • Alçiçek, H., Jiménez-Moreno, G., 2013. Late Miocene to Pliocene fluvio-lacustrine system in Karacasu Basin (SW Anatolia, Turkey): depositional, palaeogeographic and palaeoclimatic implications. Sedimentary Geology, 291, 62–83.
  • Azor, A., Keller, E. A. and Yeats, R. S., 2002. Geomorphic indicators of active fold growth; South Mountain-Oak Ridge Anticline, Ventura Basin, Southern California, Geological Society of America Bulletin. 114, 745–753.
  • Bull, B. W., 1977. Tectonic geomorphology of the Mojave Desert, U.S. Geological Survey Contact Report 14-08-001-G-394.
  • Bull, W. B. and McFadden, L. D., 1977. Tectonic geomorphology North and south of the Garlock fault, California, in: Geomorphology in Arid Regions, edited by: Doehring, D. O., Proceedings of the Eighth Annual Geomorphology Symposium, State University of New York, Binghamton, 115–138.
  • Burbank, D. W. and Anderson, R. S., 2001. Tectonic Geomorphology. Blackwell Science.
  • Burbank, D. W., 1992. Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin: Nature, v. 357, p. 680– 683.
  • Chen, Y.C., Sung, Q., Cheng, K.Y., 2003. Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: Tectonic implications based on stream-gradient and hypsometric analysis. Geomorphology, 56, 109-137.
  • Cox, R. T., 1994. Analysis of Drainage-Basin Symmetry as a Rapid Technique to Identify Areas of Possible Quaternary Tilt-Block Tectonics An Example from the Mississippi Embayment. Geological Society American Bulletin, 106, 571-581.
  • El Hamdouni, R., Irigaray, C., Fernández, T., Chacón, J. and Keller, E. A., 2008. Assessment of relatiand actiand tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology 96.
  • Hack, J. T., 1973. Stream profile analysis and stream gradient index: Journal of Research of the United States Geological Survey. 1(4): 421–429.
  • Hare, P. W. and Gardner, T. W., 1985. Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica, in: Tectonic Geomorphology, edited by: Morisawa, M. and Hack, J. T., Proceedings of the 15th Annual Binghamton Geomorphology Symposium, Allen and Unwin, Boston, 123–134.
  • Hurtrez, J. E., Lucazeau, F., Lavé, J. and Avouac, J. P., 1999. Investigation of the relationships between basin morphology, tectonic uplift, and denudation from the study of an active fold belt in the Siwalik Hills, central Nepal, Journal of Geophysical Research, v. 104, p. 12,779-12,796.
  • Kastelli, M., 1971. Denizli-Sarayköy-Çubukdağ-Karacasu alanı jeoloji incelemesi, MTA Raporu, Derleme No: 2532, 32 s.
  • Keller, E. A. and Pinter, N., 2002. Active tectonics: Earthquakes, Uplift, and Landscape (2nd Edn.), Prentice Hall, New Jersey, 432.
  • Kirby, E. and Whipple, K. X., 2012. Expression of Active Tectonics in Erosional Landscapes. Journal of Structural Geology, 44, 54-75.
  • Konak, N. ve Göktaş, F., 2004. 1/100.000 ölçekli Türkiye jeoloji haritaları serisi, Denizli M21 paftası. Ankara, Turkey: MTA (in Turkish).
  • Lifton, N. A., Chase, C. G., 1992. Tectonic, climatic and lithologic influences on landscape fractal dimension and hypsometry: implications for landscape evolution in the San Gabriel Mountains, California. Geomorphology, 5, 77-114.
  • Merritts, D. and Vincent, K. R., 1989. Geomorphic response of coastal streams to low, intermediate, and high rates of uplift, Medocino triple junction region, northern California. Geological Society of America Bulletin, 101(11): 1373–1388.
  • Nebert, K., 1955. Bozdoğan ve Karacasu’daki genç Neojen körfezleri, MTA Raporu, Derleme No. 2511, 14 s.
  • Ocakoğlu, F., Açıkalın, S., Özsayin, E. ve Dirik, K., 2014. Tectonosedimentary evolution of the Karacasu and Bozdoğan basins in the Central Menderes Massif, W Anatolia. Turkish Journal of Earth Sciences, 23 (4), 361-385.
  • Özkaymak, Ç. and Sözbilir, H., 2012. Tectonic geomorphology of the Spildağı high ranges, western Anatolia. Geomorphology, 173–174, 128–140.
  • Pérez-Peña, J. V., Azor, A., Azañón, J. M. and Keller, E. A., 2010. Actiand tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology, 119, 74-87.
  • Ramírez-Herrera, M. T., 1998. Geomorphic assessment of active tectonics in the Acambay graben, Mexican Volcanic Belt. Earth Surface Processes and Landforms, 23, 317–332.
  • Rockwell, T. K., Keller, E. A., and Jonson, D. L., 1985. Tectonic geomorphology of alluvial fans and mountain fronts near Ventura, California, in: Tectonic Geomorphology, edited by: Morisawa, M., Proceedings of the 15th Annual Geomorphology Symposium, Allen and Unwin Publishers, Boston, 183–207.
  • Selby, M. J., 1980. A rock mass strength classification for geomorphic purposes: with test from Antarctica and New Zealand . Zeitschrift für Geomorphologie, 24, 31-51.
  • Silva, P. G., Goy, J. L., Zazo, C., and Bardajm, T., 2003 Fault generated mountain fronts in Southeast Spain: geomorphologic assessment of tectonic and earthquake activity, Geomorphology, 250, 203–226.
  • Strahler, A. N., 1952. Hypsometric (area-altitude) analysis of erosional topography. Bulletin of the Geological Society of America, 63, 1117-1142.
  • Şimşek, Ş. ve Yılmaz, S., 1977. Nazilli-Kuyucak-Yenice (Karacasu) alanının jeolojisi ve jeotermel olanakları, MTA Raporu, Derleme No: 6422, 49 s.
  • Topal, S., Keller, E., Bufe, A. and Kocyiğit, A., 2016. Tectonic geomorphology of a large normal fault: Aksehir fault, SW Turkey. Geomorphology, 259, 55-69.
  • Topal, S., 2018. Quantitative analysis of relative tectonic activity in the Acıgöl fault, SW Turkey. Arab J Geosci. 11: 198. https://doi.org/10.1007/s12517-018-3545-z
  • Topal, S. ve Özkul, M., 2018. Jeomorfik İndisler Kullanılarak Honaz Fayı’nın (GB Türkiye) Göreceli Tektonik Aktivitesinin Belirlenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. PAJES-18199, DOI: 10.5505/pajes.2017.18199.

Investigation of the relative tectonic activity of the Karacasu Fault (SW Turkey) by geomorphic indices

Year 2019, Volume: 9 Issue: 1, 37 - 48, 15.01.2019
https://doi.org/10.17714/gumusfenbil.409561

Abstract

The NW-SE trending Karacasu
basin in the Aegean Extensional System cuts obliquely the Büyük Menderes
graben. The Karacasu Basin was developed in the form of a half-graben with
about 30 km long and about 10 km a width. This fault is called Karacasu
Fault.The Pre-Neogene basement consists of schists and gneisses of the Menderes
Massif. The Mio-Pliocene basin fill are represented by the conglomerates and
sandstones along the basin margins, and mudstones and limestones at the basin
center. This basin fill rest unconformably on the metamorphic basement, which
is represented by the conglomerates and sandstones along the basin margins and
mudstones and limestones at the basin center. The youngest unit is
Quaternary  units consists of coarse
clastics. Based on direction, continuity and geometry of the Karacasu Fault is
divided into two sub-segments as Çamköy and Yazır. Mountain front sinuosity
(Smf), the ratio of valley floor width to valley height (Vf), stream
length-gradient index (SL), asymmetry factor (AF), hypsometric integral (Hi)
basin shape indices in the drainage areas and mountain fronts were calculated
using DEM (12.5 m resolution) to determine the relative tectonic activity of
the Karacasu Basin. By using the average of these calculated indices, the
relative tectonic activity (Iat) index data point to was obtained. The relative
tectonic activity of the segments with the obtained Iat index is divided into
two classes. Iat index suggests very high relative tectonic activities for the
NW tips of the both segments, while high tectonic activities was determined for
the other parts of these segments. Based on findinf on this study, the length
of the segments and the ancient earthquakes in the region indicate the Karacasu
Fault has a potential to produce earthquakes with M6 and or higher magnitudes
earthquakes in the near future.

References

  • Açıkalın, S., 2005. Sedimentary evolution of the Karacasu cross-graben (Aydın, West Anatolia). MSc, Eskişehir Osmangazi University, Eskişehir, Turkey (in Turkish with English abstract).
  • Alçiçek, H., Jiménez-Moreno, G., 2013. Late Miocene to Pliocene fluvio-lacustrine system in Karacasu Basin (SW Anatolia, Turkey): depositional, palaeogeographic and palaeoclimatic implications. Sedimentary Geology, 291, 62–83.
  • Azor, A., Keller, E. A. and Yeats, R. S., 2002. Geomorphic indicators of active fold growth; South Mountain-Oak Ridge Anticline, Ventura Basin, Southern California, Geological Society of America Bulletin. 114, 745–753.
  • Bull, B. W., 1977. Tectonic geomorphology of the Mojave Desert, U.S. Geological Survey Contact Report 14-08-001-G-394.
  • Bull, W. B. and McFadden, L. D., 1977. Tectonic geomorphology North and south of the Garlock fault, California, in: Geomorphology in Arid Regions, edited by: Doehring, D. O., Proceedings of the Eighth Annual Geomorphology Symposium, State University of New York, Binghamton, 115–138.
  • Burbank, D. W. and Anderson, R. S., 2001. Tectonic Geomorphology. Blackwell Science.
  • Burbank, D. W., 1992. Causes of recent Himalayan uplift deduced from deposited patterns in the Ganges basin: Nature, v. 357, p. 680– 683.
  • Chen, Y.C., Sung, Q., Cheng, K.Y., 2003. Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: Tectonic implications based on stream-gradient and hypsometric analysis. Geomorphology, 56, 109-137.
  • Cox, R. T., 1994. Analysis of Drainage-Basin Symmetry as a Rapid Technique to Identify Areas of Possible Quaternary Tilt-Block Tectonics An Example from the Mississippi Embayment. Geological Society American Bulletin, 106, 571-581.
  • El Hamdouni, R., Irigaray, C., Fernández, T., Chacón, J. and Keller, E. A., 2008. Assessment of relatiand actiand tectonics, southwest border of the Sierra Nevada (southern Spain). Geomorphology 96.
  • Hack, J. T., 1973. Stream profile analysis and stream gradient index: Journal of Research of the United States Geological Survey. 1(4): 421–429.
  • Hare, P. W. and Gardner, T. W., 1985. Geomorphic indicators of vertical neotectonism along converging plate margins, Nicoya Peninsula, Costa Rica, in: Tectonic Geomorphology, edited by: Morisawa, M. and Hack, J. T., Proceedings of the 15th Annual Binghamton Geomorphology Symposium, Allen and Unwin, Boston, 123–134.
  • Hurtrez, J. E., Lucazeau, F., Lavé, J. and Avouac, J. P., 1999. Investigation of the relationships between basin morphology, tectonic uplift, and denudation from the study of an active fold belt in the Siwalik Hills, central Nepal, Journal of Geophysical Research, v. 104, p. 12,779-12,796.
  • Kastelli, M., 1971. Denizli-Sarayköy-Çubukdağ-Karacasu alanı jeoloji incelemesi, MTA Raporu, Derleme No: 2532, 32 s.
  • Keller, E. A. and Pinter, N., 2002. Active tectonics: Earthquakes, Uplift, and Landscape (2nd Edn.), Prentice Hall, New Jersey, 432.
  • Kirby, E. and Whipple, K. X., 2012. Expression of Active Tectonics in Erosional Landscapes. Journal of Structural Geology, 44, 54-75.
  • Konak, N. ve Göktaş, F., 2004. 1/100.000 ölçekli Türkiye jeoloji haritaları serisi, Denizli M21 paftası. Ankara, Turkey: MTA (in Turkish).
  • Lifton, N. A., Chase, C. G., 1992. Tectonic, climatic and lithologic influences on landscape fractal dimension and hypsometry: implications for landscape evolution in the San Gabriel Mountains, California. Geomorphology, 5, 77-114.
  • Merritts, D. and Vincent, K. R., 1989. Geomorphic response of coastal streams to low, intermediate, and high rates of uplift, Medocino triple junction region, northern California. Geological Society of America Bulletin, 101(11): 1373–1388.
  • Nebert, K., 1955. Bozdoğan ve Karacasu’daki genç Neojen körfezleri, MTA Raporu, Derleme No. 2511, 14 s.
  • Ocakoğlu, F., Açıkalın, S., Özsayin, E. ve Dirik, K., 2014. Tectonosedimentary evolution of the Karacasu and Bozdoğan basins in the Central Menderes Massif, W Anatolia. Turkish Journal of Earth Sciences, 23 (4), 361-385.
  • Özkaymak, Ç. and Sözbilir, H., 2012. Tectonic geomorphology of the Spildağı high ranges, western Anatolia. Geomorphology, 173–174, 128–140.
  • Pérez-Peña, J. V., Azor, A., Azañón, J. M. and Keller, E. A., 2010. Actiand tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): Insights from geomorphic indexes and drainage pattern analysis. Geomorphology, 119, 74-87.
  • Ramírez-Herrera, M. T., 1998. Geomorphic assessment of active tectonics in the Acambay graben, Mexican Volcanic Belt. Earth Surface Processes and Landforms, 23, 317–332.
  • Rockwell, T. K., Keller, E. A., and Jonson, D. L., 1985. Tectonic geomorphology of alluvial fans and mountain fronts near Ventura, California, in: Tectonic Geomorphology, edited by: Morisawa, M., Proceedings of the 15th Annual Geomorphology Symposium, Allen and Unwin Publishers, Boston, 183–207.
  • Selby, M. J., 1980. A rock mass strength classification for geomorphic purposes: with test from Antarctica and New Zealand . Zeitschrift für Geomorphologie, 24, 31-51.
  • Silva, P. G., Goy, J. L., Zazo, C., and Bardajm, T., 2003 Fault generated mountain fronts in Southeast Spain: geomorphologic assessment of tectonic and earthquake activity, Geomorphology, 250, 203–226.
  • Strahler, A. N., 1952. Hypsometric (area-altitude) analysis of erosional topography. Bulletin of the Geological Society of America, 63, 1117-1142.
  • Şimşek, Ş. ve Yılmaz, S., 1977. Nazilli-Kuyucak-Yenice (Karacasu) alanının jeolojisi ve jeotermel olanakları, MTA Raporu, Derleme No: 6422, 49 s.
  • Topal, S., Keller, E., Bufe, A. and Kocyiğit, A., 2016. Tectonic geomorphology of a large normal fault: Aksehir fault, SW Turkey. Geomorphology, 259, 55-69.
  • Topal, S., 2018. Quantitative analysis of relative tectonic activity in the Acıgöl fault, SW Turkey. Arab J Geosci. 11: 198. https://doi.org/10.1007/s12517-018-3545-z
  • Topal, S. ve Özkul, M., 2018. Jeomorfik İndisler Kullanılarak Honaz Fayı’nın (GB Türkiye) Göreceli Tektonik Aktivitesinin Belirlenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi. PAJES-18199, DOI: 10.5505/pajes.2017.18199.
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Savaş Topal

Publication Date January 15, 2019
Submission Date March 26, 2018
Acceptance Date June 9, 2018
Published in Issue Year 2019 Volume: 9 Issue: 1

Cite

APA Topal, S. (2019). Karacasu Fayı’nın (GB Türkiye) Göreceli Tektonik Aktivitesinin Jeomorfik İndislerle İncelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 9(1), 37-48. https://doi.org/10.17714/gumusfenbil.409561