Research Article
BibTex RIS Cite

The investigation of the structural, electronic, elastic, thermodynamic and phonon properties of OsAl in B2 crystal structure

Year 2019, Volume: 9 Issue: 1, 64 - 69, 15.01.2019
https://doi.org/10.17714/gumusfenbil.412164

Abstract

A theoretical study of structural, electronic, elastic, thermodynamic and
phonon properties of OsAl compound is presented by performing ab initio
calculations based on density-functional theory using pseudopotential plane
wave method. The generalized-gradient approximation (GGA) is chosen for the
exchange–correlation energy. The calculated structural parameters, such as the
lattice constant, bulk modulus, second-order elastic constants, the electronic
band structures and the related total density of states and charge density are
presented. The calculations predict that OsAl is a metal in CsCl phase. The elastic
constants were derived from the stress–strain relation. Phonon-dispersion
curves were obtained using the first principles linear-response approach of the
density functional perturbation theory.

References

  • Acharya, N., Fatima, B., Chouhan, S. S. ve Sanyal, S. P., 2014. First Principles Study on Structural, Electronic, Elastic and Thermal Properties of OsAl and OsSi. Advenced Materials Research, 1047, 71-77.
  • Al, S. ve Arıkan, N., 2017. BAUN Fen Bil. Enst. Dergisi, 19(3), 16-22.
  • Al, S., Arıkan, N., Demir, S. ve İyigör A., 2018. Lattice dynamic properties of Rh2XAl (X=Fe and Y) alloys. Physica B: Condensed Matter, 531, 16–20.
  • Arıkan, N., Charifi, Z., Baaziz, H., Uğur, Ş., Ünver, H. ve Uğur, G., 2015. Electronic structure, phase stability, and vibrational properties of Ir-based intermetallic compound IrX (X=Al, Sc, and Ga). Journal of Physics and Chemistry of Solids, 77, 126–132.
  • Edshammar, L. E., 1965. The Crystal Structures of Os2Al3 and OsAl2. Acta Chemica Scandinavica, 19, 871-874.
  • Giannozzi. P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Corso, A. D., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P. ve Wentzcovitch, R. M. J., 2009. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.:Condens. Matter 21, 395502.
  • Hein, R.A., Cox, J.E., Blaugher,, R.D. ve Waterstrat, R.M., 1969. Superconducting behavior of A15 compounds. Solid State Commun, 7, 381-384.
  • Katrych, S. O., Petyukh, V. M., Bondar, A. A. ve Steurer, W., 2007. Physicochemical materials research. Powder Metallurgy and Metal Ceramics, 46, 357-364.
  • Methfessel, M. ve Paxton, A. T., 1989. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B, 40, 3616.
  • Murnaghan, F.D., 1944. The Compressibility of Media under Extreme Pressures. Proc. Natl. Acad. Sci. USA, 30(9), 244-247.
  • Perdev, J. P., Burke, K. ve Ernzerhof, M., 1996. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett, 77, 3865.
  • Petit, A. T., ve Dulong, P. L., 1819. Recherches sur quelques points importants de la Théorie de la Chaleur. Annales de Chimie et de Physique, 10, 395-413.
  • Pugh, S.F., 1954. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag., 45, 823-843.
  • Rapp, O., J. Invarsson, ve Claeson, T., 1974. Search for superconductivity in Laves phase compounds. Phys. Lett. A, 50, 159-160.
  • Spokas, J.J. Sowers, C. H. Van Ostenburg, D. O. ve Hoeve,H. G., Nuclear Magnetic Resonance in Cubic Equiatomic Group-VIII Aluminides. 1970. Physical Review B, 1, 2523-2531.
  • Vanderbilt, D.,1990. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys, Rev, B, 41, R7892.
  • Xing, W., Chen, X-Q., Li, D., Li, Y., Fu, C.L., Meschel, S.V. ve Ding, X., 2012. First-principles studies of structural stabilities and enthalpies of formation of refractory intermetallics: TM and TM3 (T=Ti, Zr, Hf; M=Ru, Rh, Pd, Os, Ir, Pt). Intermetallics, 28, 16-24.

B2 Kristal Yapıdaki OsAl Bileşiğinin Yapısal, Elektronik, Elastik, Termodinamik ve Fonon Özelliklerinin İncelenmesi

Year 2019, Volume: 9 Issue: 1, 64 - 69, 15.01.2019
https://doi.org/10.17714/gumusfenbil.412164

Abstract

OsAl
bileşiğinin yapısal, elektronik, elastik, termodinamik ve fonon özelliklerinin
teorik olarak incelenmesi, pseudopotential düzlemsel dalga yöntemiyle
yoğunluk-fonksiyonel teoriye dayanan ab initio hesaplamaları yapılarak
sunulmuştur. Değiş-tokuş korelasyon enerjisi için Genelleştirilmiş Gradyent
Yaklaşımı seçildi. Örgü sabiti, bulk modülü, ikinci dereceden elastik sabitler,
elektronik band yapısı ve toplam durum yoğunlukları (DOS) gibi parametreler
hesaplandı. Yapılan hesaplamalar CsCl yapıdaki OsAl’nin bir metal
olduğunu göstermektedir. Elastik sabitler, zor-zorlanma ilişkisinden
türetilmiştir. Fonon dispersiyon eğrileri yoğunluk fonksiyonel pertürbasyon
teorisinin ilk prensip lineer tepki yaklaşımı kullanılarak elde edildi.

References

  • Acharya, N., Fatima, B., Chouhan, S. S. ve Sanyal, S. P., 2014. First Principles Study on Structural, Electronic, Elastic and Thermal Properties of OsAl and OsSi. Advenced Materials Research, 1047, 71-77.
  • Al, S. ve Arıkan, N., 2017. BAUN Fen Bil. Enst. Dergisi, 19(3), 16-22.
  • Al, S., Arıkan, N., Demir, S. ve İyigör A., 2018. Lattice dynamic properties of Rh2XAl (X=Fe and Y) alloys. Physica B: Condensed Matter, 531, 16–20.
  • Arıkan, N., Charifi, Z., Baaziz, H., Uğur, Ş., Ünver, H. ve Uğur, G., 2015. Electronic structure, phase stability, and vibrational properties of Ir-based intermetallic compound IrX (X=Al, Sc, and Ga). Journal of Physics and Chemistry of Solids, 77, 126–132.
  • Edshammar, L. E., 1965. The Crystal Structures of Os2Al3 and OsAl2. Acta Chemica Scandinavica, 19, 871-874.
  • Giannozzi. P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Corso, A. D., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P. ve Wentzcovitch, R. M. J., 2009. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.:Condens. Matter 21, 395502.
  • Hein, R.A., Cox, J.E., Blaugher,, R.D. ve Waterstrat, R.M., 1969. Superconducting behavior of A15 compounds. Solid State Commun, 7, 381-384.
  • Katrych, S. O., Petyukh, V. M., Bondar, A. A. ve Steurer, W., 2007. Physicochemical materials research. Powder Metallurgy and Metal Ceramics, 46, 357-364.
  • Methfessel, M. ve Paxton, A. T., 1989. High-precision sampling for Brillouin-zone integration in metals. Phys. Rev. B, 40, 3616.
  • Murnaghan, F.D., 1944. The Compressibility of Media under Extreme Pressures. Proc. Natl. Acad. Sci. USA, 30(9), 244-247.
  • Perdev, J. P., Burke, K. ve Ernzerhof, M., 1996. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett, 77, 3865.
  • Petit, A. T., ve Dulong, P. L., 1819. Recherches sur quelques points importants de la Théorie de la Chaleur. Annales de Chimie et de Physique, 10, 395-413.
  • Pugh, S.F., 1954. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag., 45, 823-843.
  • Rapp, O., J. Invarsson, ve Claeson, T., 1974. Search for superconductivity in Laves phase compounds. Phys. Lett. A, 50, 159-160.
  • Spokas, J.J. Sowers, C. H. Van Ostenburg, D. O. ve Hoeve,H. G., Nuclear Magnetic Resonance in Cubic Equiatomic Group-VIII Aluminides. 1970. Physical Review B, 1, 2523-2531.
  • Vanderbilt, D.,1990. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys, Rev, B, 41, R7892.
  • Xing, W., Chen, X-Q., Li, D., Li, Y., Fu, C.L., Meschel, S.V. ve Ding, X., 2012. First-principles studies of structural stabilities and enthalpies of formation of refractory intermetallics: TM and TM3 (T=Ti, Zr, Hf; M=Ru, Rh, Pd, Os, Ir, Pt). Intermetallics, 28, 16-24.
There are 17 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mustafa Özduran 0000-0003-4347-5906

Publication Date January 15, 2019
Submission Date April 3, 2018
Acceptance Date June 20, 2018
Published in Issue Year 2019 Volume: 9 Issue: 1

Cite

APA Özduran, M. (2019). B2 Kristal Yapıdaki OsAl Bileşiğinin Yapısal, Elektronik, Elastik, Termodinamik ve Fonon Özelliklerinin İncelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 9(1), 64-69. https://doi.org/10.17714/gumusfenbil.412164