Research Article
BibTex RIS Cite

Investigation of The Effect of Changes In Ground Water Level On The Seismic Behaviour of A Cantilever Retaining Wall

Year 2019, Volume: 9 Issue: 2, 307 - 317, 15.04.2019
https://doi.org/10.17714/gumusfenbil.398875

Abstract

In this study, dynamic behavior of a retaining wall for various ground
water levels through soil is investigated in nonlinear time-history analysis
using finite element method. In order to do a more realistic analysis taking
soil-structure interaction into account, the effects of radiational damping and
wave propagation were considered. For this purpose, soil medium has been capped
off within a definite distance from the wall and virtual viscous boundaries
were applied to the vertical free surfaces at both ends of the medium. Special
interface elements were used to better model the behavior between soil and the
wall. The analyses of the retaining wall subject to the study were carried out
by using the finite element software MIDAS GTS NX and the record of San
Fernando Pacoima Dam earthquake which exist in the library of the software.
Direct solution method has been used in the analysis of soil-structure
interaction. The dynamic behavior of the wall in the sequel of the analyses
were probed in terms of stresses and displacements. In consequence of the
results obtained, it has been seen that the soil-structure interaction has a
great importance in the seismic behavior of the retaining wall and the
variations in groundwater level significantly effect the movement of the wall
and the stresses emanating on the wall.

References

  • Al Atik, L. ve Sitar, N., 2010. Seismic earth pressures on cantilever retaining structures. Journal of Geotechnical and Geoenvironmental Engineering, 136(10), 1324-1333
  • Arias, A., Sanchez-Sesma, F. ve Ovando-Shelley, E., 1981. A simplified elastic model for seismic analysis of earth-retaining structures with limited displacements.
  • Athanasopoulos-Zekkos, A., Vlachakis, V. ve Athanasopoulos, G., 2013. Phasing issues in the seismic response of yielding, gravity-type earth retaining walls–Overview and results from a FEM study. Soil Dynamics and Earthquake Engineering, 55, 59-70
  • Callisto, L. ve Soccodato, F., 2009. Seismic design of flexible cantilevered retaining walls. Journal of Geotechnical and Geoenvironmental Engineering, 136(2), 344-354
  • Canbay, E., Özcebe, G., Sucuoğlu, H., Wasti, T. ve Ersoy, U., 2008. Binalar İçin Deprem Mühendisliği Temel İlkeler. ODTÜ Geliştirme Vakfı Yayıncılık, Ankara
  • Çakır, T., 2013. Evaluation of the effect of earthquake frequency content on seismic behavior of cantilever retaining wall including soil–structure interaction. Soil Dynamics and Earthquake Engineering, 45, 96-111
  • Çakır, T., 2014a. Backfill and subsoil interaction effects on seismic behavior of a cantilever wall. Geomechanics and Engineering, 6(2), 117-138
  • Çakır, T., 2014b. Influence of wall flexibility on dynamic response of cantilever retaining walls. Structural Engineering and Mechanics, 49(1), 1-22
  • Çakır, T., 2017. Assessment of effect of material properties on seismic response of a cantilever wall. Geomechanics and Engineering, 13(4), 601-619
  • Çakır, T. ve Dağ, S., 2015. Zemin-Yapı Etkileşimi ve Duvar Esnekliği Dikkate Alınarak Konsol İstinat Duvarlarının Dinamik Yerdeğiştirme ve Gerilme Analizi. Sigma, 33(4), 577-589
  • Çakır, T. ve Kara, O., 2015. Dolgu Zeminine Ait Birim Hacim Ağırlık Değeri Değişiminin Konsol Bir İstinat Duvarının Sismik Davranışı Üzerindeki Etkileri. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(2), 87-100
  • DBYBHY, 2007. Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik. T.C. Çevre ve Şehircilik Bakanlığı, Afet İşleri Genel Müdürlüğü, Deprem Araştırma Dairesi
  • EAK-2000, 2003. Greek Seismic Code, Earthquake Planning and Protection Organization, Athens.
  • Eurocode-8, 2003. Design of Structures for Eathquake Resistance - Part 5: Foundations, Retaining Structures and Geotechnical Aspects, European Comittee for Standardization, Brussel, Belgium.
  • Evangelista, A., di Santolo, A. S. ve Simonelli, A. L., 2010. Evaluation of pseudostatic active earth pressure coefficient of cantilever retaining walls. Soil Dynamics and Earthquake Engineering, 30(11), 1119-1128
  • Gazetas, G., Psarropoulos, P., Anastasopoulos, I. ve Gerolymos, N., 2004. Seismic behaviour of flexible retaining systems subjected to short-duration moderately strong excitation. Soil Dynamics and Earthquake Engineering, 24(7), 537-550
  • Giarlelis, C. ve Mylonakis, G., 2011. Interpretation of dynamic retaining wall model tests in light of elastic and plastic solutions. Soil Dynamics and Earthquake Engineering, 31(1), 16-24
  • IS-1893, 2002. Indian Standart Criteria for Earthquake Resistant Design of Structures. General Provisions and Buildings (Fifth Revision). Part 1, 2002
  • Jung, C., Bobet, A. ve Fernández, G., 2010. Analytical solution for the response of a flexible retaining structure with an elastic backfill. International Journal for Numerical and Analytical Methods in Geomechanics, 34(13), 1387-1408
  • Kloukinas, P., di Santolo, A. S., Penna, A., Dietz, M., Evangelista, A., Simonelli, A. L., . . . Mylonakis, G., 2015. Investigation of seismic response of cantilever retaining walls: Limit analysis vs shaking table testing. Soil Dynamics and Earthquake Engineering, 77, 432-445
  • Kloukinas, P., Langousis, M. ve Mylonakis, G., 2012. Simple wave solution for seismic earth pressures on nonyielding walls. Journal of Geotechnical and Geoenvironmental Engineering, 138(12), 1514-1519
  • Korkmaz, A. ve Düzgün, M., 2011. Doğrusal olmayan yapısal analiz yöntemlerinin değerlendirilmesi. İTÜDERGİSİ/d, 6(3)
  • Kramer, S. L., 1996. Geotechnical Earthquake Engineering Prentice Hall. New York
  • Lanzoni, L., Radi, E. ve Tralli, A., 2007. On the seismic response of a flexible wall retaining a viscous poroelastic soil. Soil Dynamics and Earthquake Engineering, 27(9), 818-842
  • Lysmer, J. ve Kuhlemeyer, R. L., 1969. Finite dynamic model for infinite media. Journal of the Engineering Mechanics Division, 95(4), 859-878
  • Madabhushi, S. ve Zeng, X., 2007. Simulating seismic response of cantilever retaining walls. Journal of Geotechnical and Geoenvironmental Engineering, 133(5), 539-549
  • Matsuo, H., 1960. Lateral earth pressure and stability of quay walls during earthquakes, Proc. of 2nd WCEE, s.165-183.
  • Mononobe, N., 1929. On determination of earth pressure during earthquake, Proc. of the World Engineering Congress, Tokyo, s.177-185.
  • Mylonakis, G., Kloukinas, P. ve Papantonopoulos, C., 2007. An alternative to the Mononobe–Okabe equations for seismic earth pressures. Soil Dynamics and Earthquake Engineering, 27(10), 957-969
  • Nadim, F. ve Whitman, R. V., 1983. Seismically induced movement of retaining walls. Journal of Geotechnical Engineering, 109(7), 915-931
  • Nofal, E. M. H., 1998. Analysis of Non-lineer Soil-Pile Interaction Under Dynamic Lateral Loading. Phd Thesis, University of California. Irvine.
  • Okabe, S., 1926. General theory of earth pressures, J. Japan Soc. Civil Engineering, 12(1)
  • Özmen, B., Güler, H. ve Nurlu, M., 1997. Coğrafi bilgi sistemi ile deprem bölgelerinin incelenmesi, Bayındırlık ve İskan Bakanlığı Afet İşleri Genel Mürdürlüğü.
  • Papagiannopoulos, G., Beskos, D. ve Triantafyllidis, T., 2015. Seismic pressures on rigid cantilever walls retaining linear poroelastic soil: An exact solution. Soil Dynamics and Earthquake Engineering, 77, 208-219
  • Papazafeiropoulos, G. ve Psarropoulos, P. N., 2010. Analytical evaluation of the dynamic distress of rigid fixed-base retaining systems. Soil Dynamics and Earthquake Engineering, 30(12), 1446-1461
  • Psarropoulos, P., Klonaris, G. ve Gazetas, G., 2005. Seismic earth pressures on rigid and flexible retaining walls. Soil Dynamics and Earthquake Engineering, 25(7), 795-809
  • Richards Jr, R. ve Elms, D. G., 1979. Seismic behavior of gravity retaining walls. Journal of Geotechnical and Geoenvironmental Engineering, 105(ASCE 14496)
  • Seed, H. B. ve Whitman, R. V., 1970. Design of earth retaining structures for dynamic loads. ASCE, Specialty Conf on Lateral Stresses in Ground and Design of Earth-Retaining Structures; Ithaca, NY, 103-147
  • Steedman, R. ve Zeng, X., 1990. The influence of phase on the calculation of pseudo-static earth pressure on a retaining wall. Geotechnique, 40(1), 103-112
  • Theodorakopoulos, D., Chassiakos, A. ve Beskos, D., 2001. Dynamic pressures on rigid cantilever walls retaining poroelastic soil media. Part I. First method of solution. Soil Dynamics and Earthquake Engineering, 21(4), 315-338
  • Veletsos, A. ve Younan, A., 1994a. Dynamic soil pressures on rigid vertical walls. Earthquake engineering & structural dynamics, 23(3), 275-301
  • Veletsos, A. S. ve Younan, A. H., 1994b. Dynamic modeling and response of soil-wall systems. Journal of Geotechnical Engineering, 120(12), 2155-2179
  • Veletsos, A. S. ve Younan, A. H., 1997. Dynamic response of cantilever retaining walls. Journal of Geotechnical and Geoenvironmental Engineering, 123(2), 161-172
  • Vrettos, C., Beskos, D. ve Triantafyllidis, T., 2016. Seismic pressures on rigid cantilever walls retaining elastic continuously non-homogeneous soil: an exact solution. Soil Dynamics and Earthquake Engineering, 82, 142-153
  • Wolf, J. P. ve Song, C., 1996. Finite-element modelling of unbounded media, Wiley Chichester.
  • Wood, J. H., 1973. Earthquake-induced soil pressures on structures.
  • Wood, J. H., 1975. Earthquake-induced pressures on a rigid wall structure. Bulletin of New Zealand National Earthquake Engineering, 8, 175-186
  • Wu, G. ve Finn, W. L., 1999. Seismic lateral pressures for design of rigid walls. Canadian Geotechnical Journal, 36(3), 509-522
  • Younan, A. H. ve Veletsos, A. S., 2000. Dynamic response of flexible retaining walls. Earthquake Engineering and Structural Dynamics, 29(12), 1815-1844

Bir Konsol İstinat Duvarının Sismik Davranışına Yeraltı Su Seviyesindeki Değişimlerin Etkisinin İncelenmesi

Year 2019, Volume: 9 Issue: 2, 307 - 317, 15.04.2019
https://doi.org/10.17714/gumusfenbil.398875

Abstract

Bu
çalışmada bir istinat duvarının, zeminde farklı yeraltı su seviyeleri olması
durumundaki dinamik davranışı zaman tanım alanında sonlu elemanlar yöntemi
kullanılarak incelenmiştir. Zemin-yapı etkileşimini dikkate alarak gerçeğe daha
yakın bir analiz yapabilmek amacıyla radyasyonel sönüm etkileri ve dalga
yayılım etkileri dikkate alınmıştır. Bu amaçla duvardan belirli bir uzaklıkta
zemin ortamı sonlandırılarak zemin ortamının sonundaki düzlemsel serbest
yüzeylere viskoz sanal sınırlar uygulanmıştır. Zemin ile duvar arasındaki
davranışı daha doğru modelleyebilmek için özel arayüzey elemanları
kullanılmıştır. İstinat duvarına ait analizler MIDAS GTS NX sonlu elemanlar
yazılımı ile bu yazılımın kütüphanesinde bulunan San Fernando Pacoima Dam
depremine ait kayıt kullanılarak yapılmıştır. Zemin-yapı etkileşiminin çözümünde
doğrudan çözüm yöntemi kullanılmıştır. Yapılan analizler neticesinde duvarın
dinamik davranışı yerdeğiştirmeler ve gerilmeler cinsinden irdelenmiştir. Elde
edilen sonuçlar neticesinde zemin-yapı etkileşiminin istinat duvarının sismik
davranışında çok büyük önem arz ettiği, yeraltı su seviyesindeki değişimlerin
duvarın hareketini ve duvar üzerinde oluşan gerilmeleri önemli mertebelerde
etkilediği görülmüştür.

References

  • Al Atik, L. ve Sitar, N., 2010. Seismic earth pressures on cantilever retaining structures. Journal of Geotechnical and Geoenvironmental Engineering, 136(10), 1324-1333
  • Arias, A., Sanchez-Sesma, F. ve Ovando-Shelley, E., 1981. A simplified elastic model for seismic analysis of earth-retaining structures with limited displacements.
  • Athanasopoulos-Zekkos, A., Vlachakis, V. ve Athanasopoulos, G., 2013. Phasing issues in the seismic response of yielding, gravity-type earth retaining walls–Overview and results from a FEM study. Soil Dynamics and Earthquake Engineering, 55, 59-70
  • Callisto, L. ve Soccodato, F., 2009. Seismic design of flexible cantilevered retaining walls. Journal of Geotechnical and Geoenvironmental Engineering, 136(2), 344-354
  • Canbay, E., Özcebe, G., Sucuoğlu, H., Wasti, T. ve Ersoy, U., 2008. Binalar İçin Deprem Mühendisliği Temel İlkeler. ODTÜ Geliştirme Vakfı Yayıncılık, Ankara
  • Çakır, T., 2013. Evaluation of the effect of earthquake frequency content on seismic behavior of cantilever retaining wall including soil–structure interaction. Soil Dynamics and Earthquake Engineering, 45, 96-111
  • Çakır, T., 2014a. Backfill and subsoil interaction effects on seismic behavior of a cantilever wall. Geomechanics and Engineering, 6(2), 117-138
  • Çakır, T., 2014b. Influence of wall flexibility on dynamic response of cantilever retaining walls. Structural Engineering and Mechanics, 49(1), 1-22
  • Çakır, T., 2017. Assessment of effect of material properties on seismic response of a cantilever wall. Geomechanics and Engineering, 13(4), 601-619
  • Çakır, T. ve Dağ, S., 2015. Zemin-Yapı Etkileşimi ve Duvar Esnekliği Dikkate Alınarak Konsol İstinat Duvarlarının Dinamik Yerdeğiştirme ve Gerilme Analizi. Sigma, 33(4), 577-589
  • Çakır, T. ve Kara, O., 2015. Dolgu Zeminine Ait Birim Hacim Ağırlık Değeri Değişiminin Konsol Bir İstinat Duvarının Sismik Davranışı Üzerindeki Etkileri. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 5(2), 87-100
  • DBYBHY, 2007. Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik. T.C. Çevre ve Şehircilik Bakanlığı, Afet İşleri Genel Müdürlüğü, Deprem Araştırma Dairesi
  • EAK-2000, 2003. Greek Seismic Code, Earthquake Planning and Protection Organization, Athens.
  • Eurocode-8, 2003. Design of Structures for Eathquake Resistance - Part 5: Foundations, Retaining Structures and Geotechnical Aspects, European Comittee for Standardization, Brussel, Belgium.
  • Evangelista, A., di Santolo, A. S. ve Simonelli, A. L., 2010. Evaluation of pseudostatic active earth pressure coefficient of cantilever retaining walls. Soil Dynamics and Earthquake Engineering, 30(11), 1119-1128
  • Gazetas, G., Psarropoulos, P., Anastasopoulos, I. ve Gerolymos, N., 2004. Seismic behaviour of flexible retaining systems subjected to short-duration moderately strong excitation. Soil Dynamics and Earthquake Engineering, 24(7), 537-550
  • Giarlelis, C. ve Mylonakis, G., 2011. Interpretation of dynamic retaining wall model tests in light of elastic and plastic solutions. Soil Dynamics and Earthquake Engineering, 31(1), 16-24
  • IS-1893, 2002. Indian Standart Criteria for Earthquake Resistant Design of Structures. General Provisions and Buildings (Fifth Revision). Part 1, 2002
  • Jung, C., Bobet, A. ve Fernández, G., 2010. Analytical solution for the response of a flexible retaining structure with an elastic backfill. International Journal for Numerical and Analytical Methods in Geomechanics, 34(13), 1387-1408
  • Kloukinas, P., di Santolo, A. S., Penna, A., Dietz, M., Evangelista, A., Simonelli, A. L., . . . Mylonakis, G., 2015. Investigation of seismic response of cantilever retaining walls: Limit analysis vs shaking table testing. Soil Dynamics and Earthquake Engineering, 77, 432-445
  • Kloukinas, P., Langousis, M. ve Mylonakis, G., 2012. Simple wave solution for seismic earth pressures on nonyielding walls. Journal of Geotechnical and Geoenvironmental Engineering, 138(12), 1514-1519
  • Korkmaz, A. ve Düzgün, M., 2011. Doğrusal olmayan yapısal analiz yöntemlerinin değerlendirilmesi. İTÜDERGİSİ/d, 6(3)
  • Kramer, S. L., 1996. Geotechnical Earthquake Engineering Prentice Hall. New York
  • Lanzoni, L., Radi, E. ve Tralli, A., 2007. On the seismic response of a flexible wall retaining a viscous poroelastic soil. Soil Dynamics and Earthquake Engineering, 27(9), 818-842
  • Lysmer, J. ve Kuhlemeyer, R. L., 1969. Finite dynamic model for infinite media. Journal of the Engineering Mechanics Division, 95(4), 859-878
  • Madabhushi, S. ve Zeng, X., 2007. Simulating seismic response of cantilever retaining walls. Journal of Geotechnical and Geoenvironmental Engineering, 133(5), 539-549
  • Matsuo, H., 1960. Lateral earth pressure and stability of quay walls during earthquakes, Proc. of 2nd WCEE, s.165-183.
  • Mononobe, N., 1929. On determination of earth pressure during earthquake, Proc. of the World Engineering Congress, Tokyo, s.177-185.
  • Mylonakis, G., Kloukinas, P. ve Papantonopoulos, C., 2007. An alternative to the Mononobe–Okabe equations for seismic earth pressures. Soil Dynamics and Earthquake Engineering, 27(10), 957-969
  • Nadim, F. ve Whitman, R. V., 1983. Seismically induced movement of retaining walls. Journal of Geotechnical Engineering, 109(7), 915-931
  • Nofal, E. M. H., 1998. Analysis of Non-lineer Soil-Pile Interaction Under Dynamic Lateral Loading. Phd Thesis, University of California. Irvine.
  • Okabe, S., 1926. General theory of earth pressures, J. Japan Soc. Civil Engineering, 12(1)
  • Özmen, B., Güler, H. ve Nurlu, M., 1997. Coğrafi bilgi sistemi ile deprem bölgelerinin incelenmesi, Bayındırlık ve İskan Bakanlığı Afet İşleri Genel Mürdürlüğü.
  • Papagiannopoulos, G., Beskos, D. ve Triantafyllidis, T., 2015. Seismic pressures on rigid cantilever walls retaining linear poroelastic soil: An exact solution. Soil Dynamics and Earthquake Engineering, 77, 208-219
  • Papazafeiropoulos, G. ve Psarropoulos, P. N., 2010. Analytical evaluation of the dynamic distress of rigid fixed-base retaining systems. Soil Dynamics and Earthquake Engineering, 30(12), 1446-1461
  • Psarropoulos, P., Klonaris, G. ve Gazetas, G., 2005. Seismic earth pressures on rigid and flexible retaining walls. Soil Dynamics and Earthquake Engineering, 25(7), 795-809
  • Richards Jr, R. ve Elms, D. G., 1979. Seismic behavior of gravity retaining walls. Journal of Geotechnical and Geoenvironmental Engineering, 105(ASCE 14496)
  • Seed, H. B. ve Whitman, R. V., 1970. Design of earth retaining structures for dynamic loads. ASCE, Specialty Conf on Lateral Stresses in Ground and Design of Earth-Retaining Structures; Ithaca, NY, 103-147
  • Steedman, R. ve Zeng, X., 1990. The influence of phase on the calculation of pseudo-static earth pressure on a retaining wall. Geotechnique, 40(1), 103-112
  • Theodorakopoulos, D., Chassiakos, A. ve Beskos, D., 2001. Dynamic pressures on rigid cantilever walls retaining poroelastic soil media. Part I. First method of solution. Soil Dynamics and Earthquake Engineering, 21(4), 315-338
  • Veletsos, A. ve Younan, A., 1994a. Dynamic soil pressures on rigid vertical walls. Earthquake engineering & structural dynamics, 23(3), 275-301
  • Veletsos, A. S. ve Younan, A. H., 1994b. Dynamic modeling and response of soil-wall systems. Journal of Geotechnical Engineering, 120(12), 2155-2179
  • Veletsos, A. S. ve Younan, A. H., 1997. Dynamic response of cantilever retaining walls. Journal of Geotechnical and Geoenvironmental Engineering, 123(2), 161-172
  • Vrettos, C., Beskos, D. ve Triantafyllidis, T., 2016. Seismic pressures on rigid cantilever walls retaining elastic continuously non-homogeneous soil: an exact solution. Soil Dynamics and Earthquake Engineering, 82, 142-153
  • Wolf, J. P. ve Song, C., 1996. Finite-element modelling of unbounded media, Wiley Chichester.
  • Wood, J. H., 1973. Earthquake-induced soil pressures on structures.
  • Wood, J. H., 1975. Earthquake-induced pressures on a rigid wall structure. Bulletin of New Zealand National Earthquake Engineering, 8, 175-186
  • Wu, G. ve Finn, W. L., 1999. Seismic lateral pressures for design of rigid walls. Canadian Geotechnical Journal, 36(3), 509-522
  • Younan, A. H. ve Veletsos, A. S., 2000. Dynamic response of flexible retaining walls. Earthquake Engineering and Structural Dynamics, 29(12), 1815-1844
There are 49 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Utku Köktan

Gökhan Demir

Muzaffer Ertek This is me

Publication Date April 15, 2019
Submission Date February 26, 2018
Acceptance Date October 31, 2018
Published in Issue Year 2019 Volume: 9 Issue: 2

Cite

APA Köktan, U., Demir, G., & Ertek, M. (2019). Bir Konsol İstinat Duvarının Sismik Davranışına Yeraltı Su Seviyesindeki Değişimlerin Etkisinin İncelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 9(2), 307-317. https://doi.org/10.17714/gumusfenbil.398875