Research Article
BibTex RIS Cite

RF Magnetron Sıçratma ile Sentezlenen Nano Yapılı ZnO Yarıiletken İnce Filmlerin Optik ve Yüzey Özellikleri

Year 2019, Volume: 9 Issue: 4, 759 - 767, 15.10.2019
https://doi.org/10.17714/gumusfenbil.538545

Abstract

Bu araştırmada, RF
magnetron sıçratma tekniği ile 50 W, 100 W ve 125 W RF güçleri ile üç ayrı
deneyde ZnO ince filmler cam mikroskop lamlarının üzerine biriktirilmiştir. Her
biriktirme işlemi 30 dakika sürdürülmüştür. Spektroskopik reflektometre, UV-VIS
spektrofotometre ve atomik kuvvet mikroskobu (AFM), üretilen ince filmlerin
optik ve yüzey özellikleri üzerine sıçratma gücünün etkisini incelemek için
kullanılmıştır. Yansıtma ve geçirgenlik düzeyi, kırılma indisi ve yasak enerji
aralığı değerleri ile yüzey homojenliği ve pürüzlülüğün RF gücüne bağlı olduğu
bulunmuştur. Yasak enerji aralığı yaklaşık 3.83-3.87 eV civarındadır. Üretilen
son derece şeffaf ZnO ince filmler, çeşitli optoelektronik cihazlar ve
gelecekteki şeffaf iletken elektrot uygulamalarında kullanılabilir.

References

  • Aznilinda, Z., Herman, S. H., and Rusop, M., 2012. Physical characteristic of room-temperature deposited TiO 2 thin films by RF magnetron sputtering at different RF power. IEEE Symposium on Humanities, Science and Engineering Research, June 2012, pp. 685-689.
  • Bedia, A., Bedia, F.Z., Aillerie, M., Maloufi, N. and Benyoucef, B., 2015. Morphological and optical properties of ZnO thin films prepared by spray pyrolysis on glass substrates at various temperatures for integration in solar cell. Energy Procedia, 74, 529-538.
  • Bhatt, R., Sankaranarayanan, H., Ferekides, C. and Morel, D., 1997. The dependence of reactively sputtered ZnO electronic properties on growth parameters for use as buffer layers in CuIn/sub x/Ga/sub 1-x/Se/sub 2/solar cells. Photovoltaic Special lists Conference, 1997.
  • Cembrero, J., Elmanouni, A., Hartiti, B., Mollar, M. and Marí, B., 2004. Nanocolumnar ZnO films for photovoltaic applications. Thin Solid Films, 451-452, 198-202.
  • Cruz, M.R.A., Ceballos-Sanchez, O., Luévano-Hipólito, E. and Torres-Martínez, L.M., 2018. ZnO thin films deposited by RF magnetron sputtering: Effects of the annealing and atmosphere conditions on the photocatalytic hydrogen production. International Journal of Hydrogen Energy, 43(22), 10301-10310.
  • Çaglar, M., Caglar, Y. and Ilican, S., 2006. The determination of the thickness and optical constants of the ZnO crystalline thin film by using envelope method. Journal of Optoelectronics and Advanced Materials, 8(4), 1410-1413.
  • Deng, R., Yao, B., Li, Y.F., Xu, Y., Li, J.C, Li, B.H., Zhang, Z.Z., Zhang, L.G., Zhao, H.F. and Shen, D.Z., 2013. Ultraviolet electroluminescence from n-ZnO/p-NiO heterojunction light-emitting diode. Journal of Luminescence, 134, 240-243.
  • Ezenwa, I.A., 2012. Synthesis and optical characterization of zinc oxide thin film. Research Journal of Chemical Sciences, 2(3), 26-30.
  • Ezhilvalavan, S., and Kutty, T.R.N., 1997. Effect of antimony oxide stoichiometry on the nonlinearity of zinc oxide varistor ceramics. Materials Chemistry and Physics, 49(3), 258-269.
  • Gümüş, C., Özkendir, O.M., Kavak, H., and Ufuktepe, Y., 2006. Structural and optical properties of zinc oxide thin films prepared by spray pyrolysis method. Journal of Optoelectronics and Advanced Materials, 8(1), 299-303.
  • Güney, H. and Ertarğın, M.E., 2015. Effective annealing of ZnO thin films grown by three different SILAR processes. Eastern Anatolian Journal of Science, 1(1), 20-24.
  • Golovynskyi, S., Ievtushenko, A., Mamykin, S., Dusheiko, M., Golovynska, I., Bykov, O., Olifan, O., Myroniuk, D., Tkach, S. and Qu, J., 2018. High transparent and conductive undoped ZnO thin films deposited by reactive ion-beam sputtering. Vacuum, 153, 204-210.
  • Hwang, D.K., Bang, K.H., Jeong, M.C., and Myoung, J.M., 2003. Effects of RF power variation on properties of ZnO thin films and electrical properties of p–n homojunction. Journal of Crystal Growth, 254(3-4), 449-455.
  • Kamalasanan, M.N. and Chandra, S., 1996. Sol-gel synthesis of ZnO thin films. Thin Solid Films, 288(1-2), 112-115.
  • Kashiwaba, Y., Katahira, F., Haga, K., Sekiguchi, T. and Watanabe, H., 2000. Hetero-epitaxial growth of ZnO thin films by atmospheric pressure CVD method. Journal of Crystal Growth, 221(1-4), 431-434.
  • Lee, J.H.., Ko, K.H. and Park, B.O., 2003. Electrical and optical properties of ZnO transparent conducting films by the sol–gel method. Journal of Crystal Growth, 247(1-2), 119-125.
  • Muchuweni, E., Sathiaraj, T. and Nyakotyo, H., 2016a. Effect of gallium doping on the structural, optical and electrical properties of zinc oxide thin films prepared by spray pyrolysis. Ceramics International, 42(8), 10066-10070.
  • Muchuweni, E., Sathiaraj, T. and Nyakotyo, H., 2016b. Low temperature synthesis of radio frequency magnetron sputtered gallium and aluminium co-doped zinc oxide thin films for transparent electrode fabrication. Applied Surface Science, 390, 570-577.
  • Muchuweni, E., Sathiaraj, T. and Nyakotyo, H. 2016c., Physical properties of gallium and aluminium co-doped zinc oxide thin films deposited at different radio frequency magnetron sputtering power. Ceramics International, 42(15), 17706-17710.
  • Muchuweni, E., Sathiaraj, T. and Nyakotyo, H., 2017. Synthesis and characterization of zinc oxide thin films for Optoelectronic Applications. Heliyon, 3(4), e00285.
  • Mursal, Irhamni, Bukhari, and Jalil, Z., 2018. Structural and optical properties of zinc oxide (ZnO) based thin films deposited by sol-gel spin coating method. Journal of Physics: Conference Series, December 2018, p.1-7.
  • Nagayasamy, N., Gandhimathination, S. and Veerasamy, V., 2013. The Effect of ZnO Thin Film and Its Structural and Optical Properties Prepared by Sol-Gel Spin Coating Method. Open Journal of Metal, 3(02), 8-11.
  • Özgür, M., Pat, S., Mohammadigharehbagh, R., Musaoğlu, C., Demirkol, U., Elmas, S., Özen, S. and Korkmaz, Ş., 2019. Sn doped ZnO thin film deposition using thermionic vacuum arc technique. Journal of Alloys and Compounds, 774, 1017-1023.
  • Panda, S.K. and Jacob, C. 2012., Preparation of transparent ZnO thin films and their application in UV sensor devices. Solid-State Electronics, 73, 44-50.
  • Paraguay, F.D, Estrada, W.L..,Acosta, D.R.N., Andrade, E. and Miki-Yoshida, M., 1999. Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis. Thin Solid Films, 350(1-2), 192-202.
  • Sahal, M., Hartiti, B., Ridah, A., Mollar, M. and Mari, B., 2008. Structural, electrical and optical properties of ZnO thin films deposited by sol–gel method. Microelectronics Journal, 39(12), 1425-1428.
  • Sans, J.A., Segura, A., Mollar, M. and Marí, B., 2004. Optical properties of thin films of ZnO prepared by pulsed laser deposition. Thin Solid Films, 453-454, 251-255.
  • Sathiaraj, T.S., 2008. Effect of annealing on the structural, optical and electrical properties of ITO films by RF sputtering under low vacuum level. Microelectronics Journal, 39(12), 1444-1451.
  • Shinde, S.S., Shinde, P.S., Oh, Y.W., Haranath, D., Bhosale, C.H. and Rajpure, K.Y., 2012. Structural, optoelectronic, luminescence and thermal properties of Ga-doped zinc oxide thin films. Applied Surface Science, 258(24), 9969-9976.
  • Silva, É.P.D., Chaves, M., Durrant, S.F., Lisboa-Filho, P.N. and Bortoleto, J.R.R., 2014. Morphological and electrical evolution of ZnO:Al thin filmsdeposited by RF magnetron sputtering onto glass substrates. Materials Research, 17(6), 1384-1390.
  • Shariffudin, S.S., Salina, M., Herman, S.H. and Rusop, M.,2012. Effect of film thickness on structural, electrical, and optical properties of sol-gel deposited layer-by-layer ZnO nanoparticles. Transactions on Electrical and Electronic Materials, 13(2), 102-105.
  • Soylu, M. and Yakuphanoglu, F., 2016. Fabrication and characterization of light-sensing device based on transparent ZnO thin film prepared by sol-gel. Optik, 127(20), 8479-8486.
  • Srivastava, A.K. and Kumar, J., 2013. Effect of zinc addition and vacuum annealing time on the properties of spin-coated low-cost transparent conducting 1 at% Ga–ZnO thin films. Science and Technology of Advanced Materials, 14(6), 065002.
  • Tauc, J., Grigorovici, R. and Vancu, A., 1966. Optical properties and electronic structure of amorphous germanium. Physica Status Solidi (b), 15(2), 627-637.
  • Xu, J., Pan, Q., Shun, Y. and Tian, Z., 2000. Grain size control and gas sensing properties of ZnO gas sensor. Sensors and Actuators B: Chemical, 66(1-3), 277-279.
  • Yang, P.F., Wen, H.C., Jian, S.R., Lai, Y.S., Wu, S. and Chen, R.S., 2008. Characteristics of ZnO thin films prepared by radio frequency magnetron sputtering. Microelectronics Reliability, 48(3), 389-394.
  • Yu, X., Ma, J., Ji, F., Wang, Y., Zhang, X., Cheng, C., and Ma, H., 2005. Effects of sputtering power on the properties of ZnO: Ga films deposited by r.f. magnetron-sputtering at low temperature. Journal of Crystal Growth, 274(3-4), 474-479.
  • Zahedi, F., Dariani, R.S. and Rozati, S.M, 2014. Structural, optical and electrical properties of ZnO thin films prepared by spray pyrolysis: effect of precursor concentration. Bulletin of Materials Science, 37(3), 433-439.
  • Zahirullah, S.S., Immanuel, P., Pravinraj, S., Inbaraj, P.F.H. and Prince, J.J., 2018. Synthesis and characterization of Bi doped ZnO thin films using SILAR method for ethanol sensor. Materials Letters, 230, 1-4.

Optical and Surface Properties of Nanostructured ZnO Semiconductor Thin Films Synthesized by RF Magnetron Sputtering

Year 2019, Volume: 9 Issue: 4, 759 - 767, 15.10.2019
https://doi.org/10.17714/gumusfenbil.538545

Abstract

In this
research, ZnO thin films were deposited on glass microscope slides in three
separate experiments with RF input powers of 50 W, 100 W and 125 W by means of
RF magnetron sputtering technique. Each deposition process was conducted for 30
minutes. Spectroscopic reflectometer
, UV-VIS
spectrophotometer and
atomic force microscope (AFM) were used to examine the effect of
sputtering power on the optical and surface properties of the produced thin
films. The level of reflectivity and transparency, refractive index and band
gap energy values as well as surface
homogeneity and roughness were
observed to rely on the RF input power. The optical band gap energy values were
about 3.83-3.87 eV. The produced highly transparent ZnO thin films can be used
in various optoelectronic devices and future transparent conductive electrode
implementations.

References

  • Aznilinda, Z., Herman, S. H., and Rusop, M., 2012. Physical characteristic of room-temperature deposited TiO 2 thin films by RF magnetron sputtering at different RF power. IEEE Symposium on Humanities, Science and Engineering Research, June 2012, pp. 685-689.
  • Bedia, A., Bedia, F.Z., Aillerie, M., Maloufi, N. and Benyoucef, B., 2015. Morphological and optical properties of ZnO thin films prepared by spray pyrolysis on glass substrates at various temperatures for integration in solar cell. Energy Procedia, 74, 529-538.
  • Bhatt, R., Sankaranarayanan, H., Ferekides, C. and Morel, D., 1997. The dependence of reactively sputtered ZnO electronic properties on growth parameters for use as buffer layers in CuIn/sub x/Ga/sub 1-x/Se/sub 2/solar cells. Photovoltaic Special lists Conference, 1997.
  • Cembrero, J., Elmanouni, A., Hartiti, B., Mollar, M. and Marí, B., 2004. Nanocolumnar ZnO films for photovoltaic applications. Thin Solid Films, 451-452, 198-202.
  • Cruz, M.R.A., Ceballos-Sanchez, O., Luévano-Hipólito, E. and Torres-Martínez, L.M., 2018. ZnO thin films deposited by RF magnetron sputtering: Effects of the annealing and atmosphere conditions on the photocatalytic hydrogen production. International Journal of Hydrogen Energy, 43(22), 10301-10310.
  • Çaglar, M., Caglar, Y. and Ilican, S., 2006. The determination of the thickness and optical constants of the ZnO crystalline thin film by using envelope method. Journal of Optoelectronics and Advanced Materials, 8(4), 1410-1413.
  • Deng, R., Yao, B., Li, Y.F., Xu, Y., Li, J.C, Li, B.H., Zhang, Z.Z., Zhang, L.G., Zhao, H.F. and Shen, D.Z., 2013. Ultraviolet electroluminescence from n-ZnO/p-NiO heterojunction light-emitting diode. Journal of Luminescence, 134, 240-243.
  • Ezenwa, I.A., 2012. Synthesis and optical characterization of zinc oxide thin film. Research Journal of Chemical Sciences, 2(3), 26-30.
  • Ezhilvalavan, S., and Kutty, T.R.N., 1997. Effect of antimony oxide stoichiometry on the nonlinearity of zinc oxide varistor ceramics. Materials Chemistry and Physics, 49(3), 258-269.
  • Gümüş, C., Özkendir, O.M., Kavak, H., and Ufuktepe, Y., 2006. Structural and optical properties of zinc oxide thin films prepared by spray pyrolysis method. Journal of Optoelectronics and Advanced Materials, 8(1), 299-303.
  • Güney, H. and Ertarğın, M.E., 2015. Effective annealing of ZnO thin films grown by three different SILAR processes. Eastern Anatolian Journal of Science, 1(1), 20-24.
  • Golovynskyi, S., Ievtushenko, A., Mamykin, S., Dusheiko, M., Golovynska, I., Bykov, O., Olifan, O., Myroniuk, D., Tkach, S. and Qu, J., 2018. High transparent and conductive undoped ZnO thin films deposited by reactive ion-beam sputtering. Vacuum, 153, 204-210.
  • Hwang, D.K., Bang, K.H., Jeong, M.C., and Myoung, J.M., 2003. Effects of RF power variation on properties of ZnO thin films and electrical properties of p–n homojunction. Journal of Crystal Growth, 254(3-4), 449-455.
  • Kamalasanan, M.N. and Chandra, S., 1996. Sol-gel synthesis of ZnO thin films. Thin Solid Films, 288(1-2), 112-115.
  • Kashiwaba, Y., Katahira, F., Haga, K., Sekiguchi, T. and Watanabe, H., 2000. Hetero-epitaxial growth of ZnO thin films by atmospheric pressure CVD method. Journal of Crystal Growth, 221(1-4), 431-434.
  • Lee, J.H.., Ko, K.H. and Park, B.O., 2003. Electrical and optical properties of ZnO transparent conducting films by the sol–gel method. Journal of Crystal Growth, 247(1-2), 119-125.
  • Muchuweni, E., Sathiaraj, T. and Nyakotyo, H., 2016a. Effect of gallium doping on the structural, optical and electrical properties of zinc oxide thin films prepared by spray pyrolysis. Ceramics International, 42(8), 10066-10070.
  • Muchuweni, E., Sathiaraj, T. and Nyakotyo, H., 2016b. Low temperature synthesis of radio frequency magnetron sputtered gallium and aluminium co-doped zinc oxide thin films for transparent electrode fabrication. Applied Surface Science, 390, 570-577.
  • Muchuweni, E., Sathiaraj, T. and Nyakotyo, H. 2016c., Physical properties of gallium and aluminium co-doped zinc oxide thin films deposited at different radio frequency magnetron sputtering power. Ceramics International, 42(15), 17706-17710.
  • Muchuweni, E., Sathiaraj, T. and Nyakotyo, H., 2017. Synthesis and characterization of zinc oxide thin films for Optoelectronic Applications. Heliyon, 3(4), e00285.
  • Mursal, Irhamni, Bukhari, and Jalil, Z., 2018. Structural and optical properties of zinc oxide (ZnO) based thin films deposited by sol-gel spin coating method. Journal of Physics: Conference Series, December 2018, p.1-7.
  • Nagayasamy, N., Gandhimathination, S. and Veerasamy, V., 2013. The Effect of ZnO Thin Film and Its Structural and Optical Properties Prepared by Sol-Gel Spin Coating Method. Open Journal of Metal, 3(02), 8-11.
  • Özgür, M., Pat, S., Mohammadigharehbagh, R., Musaoğlu, C., Demirkol, U., Elmas, S., Özen, S. and Korkmaz, Ş., 2019. Sn doped ZnO thin film deposition using thermionic vacuum arc technique. Journal of Alloys and Compounds, 774, 1017-1023.
  • Panda, S.K. and Jacob, C. 2012., Preparation of transparent ZnO thin films and their application in UV sensor devices. Solid-State Electronics, 73, 44-50.
  • Paraguay, F.D, Estrada, W.L..,Acosta, D.R.N., Andrade, E. and Miki-Yoshida, M., 1999. Growth, structure and optical characterization of high quality ZnO thin films obtained by spray pyrolysis. Thin Solid Films, 350(1-2), 192-202.
  • Sahal, M., Hartiti, B., Ridah, A., Mollar, M. and Mari, B., 2008. Structural, electrical and optical properties of ZnO thin films deposited by sol–gel method. Microelectronics Journal, 39(12), 1425-1428.
  • Sans, J.A., Segura, A., Mollar, M. and Marí, B., 2004. Optical properties of thin films of ZnO prepared by pulsed laser deposition. Thin Solid Films, 453-454, 251-255.
  • Sathiaraj, T.S., 2008. Effect of annealing on the structural, optical and electrical properties of ITO films by RF sputtering under low vacuum level. Microelectronics Journal, 39(12), 1444-1451.
  • Shinde, S.S., Shinde, P.S., Oh, Y.W., Haranath, D., Bhosale, C.H. and Rajpure, K.Y., 2012. Structural, optoelectronic, luminescence and thermal properties of Ga-doped zinc oxide thin films. Applied Surface Science, 258(24), 9969-9976.
  • Silva, É.P.D., Chaves, M., Durrant, S.F., Lisboa-Filho, P.N. and Bortoleto, J.R.R., 2014. Morphological and electrical evolution of ZnO:Al thin filmsdeposited by RF magnetron sputtering onto glass substrates. Materials Research, 17(6), 1384-1390.
  • Shariffudin, S.S., Salina, M., Herman, S.H. and Rusop, M.,2012. Effect of film thickness on structural, electrical, and optical properties of sol-gel deposited layer-by-layer ZnO nanoparticles. Transactions on Electrical and Electronic Materials, 13(2), 102-105.
  • Soylu, M. and Yakuphanoglu, F., 2016. Fabrication and characterization of light-sensing device based on transparent ZnO thin film prepared by sol-gel. Optik, 127(20), 8479-8486.
  • Srivastava, A.K. and Kumar, J., 2013. Effect of zinc addition and vacuum annealing time on the properties of spin-coated low-cost transparent conducting 1 at% Ga–ZnO thin films. Science and Technology of Advanced Materials, 14(6), 065002.
  • Tauc, J., Grigorovici, R. and Vancu, A., 1966. Optical properties and electronic structure of amorphous germanium. Physica Status Solidi (b), 15(2), 627-637.
  • Xu, J., Pan, Q., Shun, Y. and Tian, Z., 2000. Grain size control and gas sensing properties of ZnO gas sensor. Sensors and Actuators B: Chemical, 66(1-3), 277-279.
  • Yang, P.F., Wen, H.C., Jian, S.R., Lai, Y.S., Wu, S. and Chen, R.S., 2008. Characteristics of ZnO thin films prepared by radio frequency magnetron sputtering. Microelectronics Reliability, 48(3), 389-394.
  • Yu, X., Ma, J., Ji, F., Wang, Y., Zhang, X., Cheng, C., and Ma, H., 2005. Effects of sputtering power on the properties of ZnO: Ga films deposited by r.f. magnetron-sputtering at low temperature. Journal of Crystal Growth, 274(3-4), 474-479.
  • Zahedi, F., Dariani, R.S. and Rozati, S.M, 2014. Structural, optical and electrical properties of ZnO thin films prepared by spray pyrolysis: effect of precursor concentration. Bulletin of Materials Science, 37(3), 433-439.
  • Zahirullah, S.S., Immanuel, P., Pravinraj, S., Inbaraj, P.F.H. and Prince, J.J., 2018. Synthesis and characterization of Bi doped ZnO thin films using SILAR method for ethanol sensor. Materials Letters, 230, 1-4.
There are 39 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Volkan Şenay 0000-0002-6579-2737

Publication Date October 15, 2019
Submission Date March 12, 2019
Acceptance Date August 23, 2019
Published in Issue Year 2019 Volume: 9 Issue: 4

Cite

APA Şenay, V. (2019). RF Magnetron Sıçratma ile Sentezlenen Nano Yapılı ZnO Yarıiletken İnce Filmlerin Optik ve Yüzey Özellikleri. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 9(4), 759-767. https://doi.org/10.17714/gumusfenbil.538545