Research Article
BibTex RIS Cite

TiO2 Nanopartikülü ve TiO2/Aktif Çamur Sentezi ile Sulu Çözeltiden Cu (II) İyonlarının Adsorpsiyonu

Year 2020, Volume: 10 Issue: 1, 86 - 98, 15.01.2020
https://doi.org/10.17714/gumusfenbil.514285

Abstract

Son
zamanlarda sulardan ağır metal giderim çalışmaları önem kazanmıştır. Bu amaçla bu çalışmada sulu çözeltiden Cu (II)
iyonlarının gideriminde kullanılmak üzere sol-jel yöntemi ile saf TiO2 nanopartikülleri
ve TiO2/aktif çamur bileşimi sentezlenmiştir. Sentezlenen
materyallerin karakterizasyon analizleri; X ışını kırınım analizi (XRD), UV-Vis
absorpsiyon spektroskopisi (UV-VIS), taramalı elektron mikroskobu (SEM), enerji
dağılım X-ışınları spektroskopisi (EDS) ve Fourier Dönüşümlü Kızılötesi
Spektroskopisi (FTIR) teknikleri kullanılarak gerçekleştirilmiştir. TiO2 nanopartikülleri
ve TiO2/aktif çamur bileşiminin Cu (II) giderim potansiyeli kesikli
sistemde incelenmiştir. 25oC’de sentezlenen TiO2/aktif
çamur bileşimi bakır gideriminde en iyi adsorban olarak belirlenmiştir.
Adsorpsiyon sisteminin optimum koşullarını belirlemek amacı ile pH, temas
süresi, başlangıç metal iyon derişim gibi parametrelerin etkisi incelenmiştir.
Sistemin Langmuir ve Freundlich adsorpsiyon izotermlerine uygunluğu
araştırılmış, Langmuir izotermine daha uygun olduğu belirlenmiş ve sistemin
maksimum adsorpsiyon kapasitesi 47.61 mg/g olarak hesaplanmıştır. En uygun
kinetik modeli belirlemek için yapılan çalışmalarda ise adsorpsiyon prosesinin
yalancı ikinci dereceden kinetik model ile uyum sağladığı gözlenmiştir. Gibbs
serbest enerji ve entalpi değerleri ise sistemin kendiliğinden gerçekleştiğini
ve ekzotermik olduğunu göstermiştir.

References

  • Al-Senani, G.M. ve Al-Fawzan, F.F., 2018. Study on adsorption of Cu and Ba from aqueous solutions using nanoparticles of Origanum (OR) and Lavandula (LV). Bioinorganic Chemistry and Applications, 2018, 1-8.
  • Aware,D.V., ve Jadhav, S.S.,. 2016. Synthesis, characterization and photocatalytic applications of Zn-doped TiO2 nanoparticles by sol–gel method. Applied Nanoscience, 6(7) 965–972.
  • Basibuyuk, M. ve Forster, C.F., 2003. An examination of the adsorption characteristics of a basic dye (Maxilon Red BL-N) on to live activated sludge system. Process Biochemistry, 38, 1311-1316.
  • Bayat, B., 2002. Comparative study of adsorption properties of Turkish fly ashes: I. The case of nickel(II), copper(II) and zinc(II). Journal of Hazardous Materials, 95, 251-273.
  • Bhattacharya, K.G. ve Sharma, A., 2005. Kinetics and thermodynamics of Methylene Blue adsorption on Neem (Azadirachta indica) leaf powder”. Dyes and Pigments,65, 51-59.
  • Cheng, J., Ding, L., Lin,R., Liu, M., Zhou, J. ve Cen, K., 2016. Physicochemical characterization of typical municipal solid wastes for fermentative hydrogen and methane co-production. Energy Conversion and Management, 117, 297–304.
  • Dakiky, M.,Khamis, M., Manassra, A. ve M. Mer’eb, M., 2002. Selective adsorption of chromium(VI) in industrial wastewater using low-cost abundantly available adsorbents. Advances in Environmental Research, 6, 533-540.
  • Deliyanni, E.A., Lazaridis, N.K., Peleka, E.N. ve Matis, K.A., 2004. Metals Removal from Aqueous Solution by Iron-Based Bonding Agents. Environmental Science and Pollution Research, 11(1), 18-21.
  • Demirkiran, N., ve Künkül, A., 2011. Recovering of copper with metallic aluminum. Transactions of Nonferrous Metals Society of China (English Edition), 21(12),2778-2782.
  • Da Fonseca,M. G., De Oliveira, M.M. ve Luiza N.H.A., 2006. Removal of cadmium, zinc, manganese and chromium cations from aqueous solution by a clay mineral.Journal of Hazardous Materials, 137(1), 288-92.
  • Fu, Yuan, Xin Liu, ve Guanyi Chen. 2019. Adsorption of heavy metal sewage on nano-materials such as titanate/TiO2 added lignin. Results in Physics 12: 405–11.
  • Fu, Y.ve Viraraghavan, T.,. 2001. Fungal decolorization of dye wastewaters: A review. Bioresource Technology, 79, 251-262
  • Golkhah, S.,Mousavi, H.Z., Shirkhanloo, H. veKhaligh, A., 2017. Removal of Pb(II) and Cu(II) Ions from Aqueous Solutions by Cadmium Sulfide Nanoparticles. International Journal of Nanoscience and Nanotechnology, 13(2), 105-117.
  • Hamaloğlu, K.Ö., Sağ, E., Kip, Ç., Şenlik, E., Kaya, B.S., Tuncel, A. 2019. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix. Frontiers of Chemical Science and Engineering, 13(3), 574-585.
  • Karkare, M.M.,2014. Choice of precursor not affecting the size of anatase TiO2 nanoparticles but affecting morphology under broader view. International Nano Letters,4(3), 111
  • Lee, S.M., Laldawngliana, C. ve Tiwari, D.,. 2012. Iron oxide nano-particles-immobilized-sand material in the treatment of Cu(II), Cd(II) and Pb(II) contaminated waste waters. Chemical Engineering Journal, 195-196, 103-111.
  • Lei, X.F., Xue, X.X. ve Yang, H.H.,. 2014. Preparation and characterization of Ag-doped TiO2 nanomaterials and their photocatalytic reduction of Cr(VI) under visible light. Applied Surface Science, 321, 396-403.
  • Li, X., Dai, X., Takahashi, J., Li, N., Jin, J., Dai, L. ve Dong, B.,2014. New insight into chemical changes of dissolved organic matter during anaerobic digestion of dewatered sewage sludge using EEM-PARAFAC and two-dimensional FTIR correlation spectroscopy. Bioresource Technology, 159, 412--420
  • Lin, C., Zhu, W. ve Han, J. 2013. Strength and Leachability of Solidified Sewage Sludge with Different Additives. Journal of Materials in Civil Engineering, 25(11), 1594–1601.
  • Liu, D.,, Sun, D. ve Li. Y., 2011. Removal of Cu(II) and Cd(II) from aqueous solutions by polyaniline on sawdust. Separation Science and Technology, 46(2), 321-29.
  • Moftakhar, M. K., Yaftian, M.R. veGhorbanloo, M., 2016. Adsorption efficiency, thermodynamics and kinetics of Schiff base-modified nanoparticles for removal of heavy metals. International Journal of Environmental Science and Technology, 13(7), 1707–1722.
  • Nguyen, N.V., Jeong, J., ve Lee, J.C., 2013. Removal of chromium(VI) from the leachate of electronic scrap using non-ionic Amberlite XAD-7HP resin. Journal of Chemical Technology and Biotechnology 88(6): 1014–22.
  • Okieimen, F.E., Sogbaike, C.E. veEbhoaye, J.E., 2005. Removal of cadmium and copper ions from aqueous solution with cellulose graft copolymers. Separation and Purification Technology, 44(1), 85–89.
  • Ozdes, D.,Duran, C. ve Senturk, H.B.,. 2011. Adsorptive removal of Cd(II) and Pb(II) ions from aqueous solutions by using Turkish illitic clay. Journal of Environmental Management, 92, 3082-3090
  • Plohl,O., Finšgar , M., Gyergyek, S., Ajdnik, U., Ban, I ve Zemljič, L.F.,. 2019. Efficient Copper Removal from an Aqueous Anvironment using a Novel and Hybrid Nanoadsorbent Based on Derived-Polyethyleneimine Linked to Silica Magnetic Nanocomposites. Nanomaterials, 9(2), 209.
  • Sandell, E.B., 1948. Colorimetric Determination of Traces of Gold. Analytical Chemistry, 20(3), 253-256.
  • Senturk, I., Buyukgungor, H. ve Geyikci, F. 2016. Biosorption of phenol from aqueous solutions by the Aspergillus niger biomass: comparison of linear and non-linear regression analysis. Desalination and Water Treatment, 57(41), 19529-19539.
  • Shahwan, T. ve Erten, H.N.. 2002. Thermodynamic parameters of Cs+sorption on natural clays. Journal of Radioanalytical and Nuclear Chemistry, 253, 115-120
  • Sharaf El-Deen, S. E.A. ve Zhang, F.S.,. 2016. Immobilisation of TiO2-nanoparticles on sewage sludge and their adsorption for cadmium removal from aqueous solutions. Journal of Experimental Nanoscience, 11(4), 239–258.
  • Spurr, R.A., ve Myers, H., 1957. Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer. Analytical Chemistry, 29(5), 760–762.
  • Sun, W., Yin, K. ve Yu, X.,. 2013. Effect of natural aquatic colloids on Cu(II) and Pb(II) adsorption by Al2O3 nanoparticles. Chemical Engineering Journal, 225,464-473.
  • Tamez, C., Hernandez, R. ve Parsons, J.G., 2016. Removal of Cu (II) and Pb (II) from aqueous solution using engineered iron oxide nanoparticles. Microchemical Journal, 125, 97-104.
  • Vasei, M., Das, P., Cherfouth, H., Marsan, B. ve Claverie, J.P., 2014. TiO2@C core-shell nanoparticles formed by polymeric nano-encapsulation. Frontiers in Chemistry, 2,47, 1-9
  • Wu, C.H.,2007. Studies of the equilibrium and thermodynamics of the adsorption of Cu2+ onto as-produced and modified carbon nanotubes. Journal of Colloid and Interface Science, 311,338-346
  • Zhou, Y.,, Zhang, Z., Zhang, J. ve Xia, S., 2016. New insight into adsorption characteristics and mechanisms of the biosorbent from waste activated sludge for heavy metals. Journal of Environmental Sciences, 45, 248–256.

Removal of Cu(II) ions from Aqueous Solution by Synthesis of TiO2 nanoparticles and TiO2/Activated Sludge

Year 2020, Volume: 10 Issue: 1, 86 - 98, 15.01.2020
https://doi.org/10.17714/gumusfenbil.514285

Abstract

In recent years, the removal of heavy metals from
water has gained importance. For this purpose, pure TiO
2 nanoparticles
and TiO
2/activated sludge composition were synthesized by sol-gel
method for removal of Cu (II) heavy metal in this work. Characterization analyzes of the synthesized materials were performed
using X-ray diffraction (XRD),
Ultravioletvisible spectroscopy
(UV–VIS) spectrometer
, scanning electron
microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and Fourier
Transform Infrared Spectroscopy (FTIR) techniques. The adsorption potential of
nanosized TiO
2 and TiO2/activated sludge composition for
removal of Cu  (II) was investigated in a
batch system. TiO
2/sewage sludge at 25 oC was found to be
the best adsorbent for copper removal. In order to determine the optimum
conditions of the adsorption system, the effects of the parameters such as the
effect of pH, contact time, initial metal ion concentrations were investigated.
The suitability of the system for Langmuir and Freundlich adsorption isotherms
was investigated, and it was determined that Langmuir isotherm was more
suitable and the maximum adsorption capacity of the system was calculated as
47.61 mg/g. In the studies conducted to determine the most suitable kinetic
model, it was observed that the adsorption process conformed to the
pseudo-second kinetic model. Gibbs free energy and enthalpy values ​​show that
the system is spontaneous and exothermic.

References

  • Al-Senani, G.M. ve Al-Fawzan, F.F., 2018. Study on adsorption of Cu and Ba from aqueous solutions using nanoparticles of Origanum (OR) and Lavandula (LV). Bioinorganic Chemistry and Applications, 2018, 1-8.
  • Aware,D.V., ve Jadhav, S.S.,. 2016. Synthesis, characterization and photocatalytic applications of Zn-doped TiO2 nanoparticles by sol–gel method. Applied Nanoscience, 6(7) 965–972.
  • Basibuyuk, M. ve Forster, C.F., 2003. An examination of the adsorption characteristics of a basic dye (Maxilon Red BL-N) on to live activated sludge system. Process Biochemistry, 38, 1311-1316.
  • Bayat, B., 2002. Comparative study of adsorption properties of Turkish fly ashes: I. The case of nickel(II), copper(II) and zinc(II). Journal of Hazardous Materials, 95, 251-273.
  • Bhattacharya, K.G. ve Sharma, A., 2005. Kinetics and thermodynamics of Methylene Blue adsorption on Neem (Azadirachta indica) leaf powder”. Dyes and Pigments,65, 51-59.
  • Cheng, J., Ding, L., Lin,R., Liu, M., Zhou, J. ve Cen, K., 2016. Physicochemical characterization of typical municipal solid wastes for fermentative hydrogen and methane co-production. Energy Conversion and Management, 117, 297–304.
  • Dakiky, M.,Khamis, M., Manassra, A. ve M. Mer’eb, M., 2002. Selective adsorption of chromium(VI) in industrial wastewater using low-cost abundantly available adsorbents. Advances in Environmental Research, 6, 533-540.
  • Deliyanni, E.A., Lazaridis, N.K., Peleka, E.N. ve Matis, K.A., 2004. Metals Removal from Aqueous Solution by Iron-Based Bonding Agents. Environmental Science and Pollution Research, 11(1), 18-21.
  • Demirkiran, N., ve Künkül, A., 2011. Recovering of copper with metallic aluminum. Transactions of Nonferrous Metals Society of China (English Edition), 21(12),2778-2782.
  • Da Fonseca,M. G., De Oliveira, M.M. ve Luiza N.H.A., 2006. Removal of cadmium, zinc, manganese and chromium cations from aqueous solution by a clay mineral.Journal of Hazardous Materials, 137(1), 288-92.
  • Fu, Yuan, Xin Liu, ve Guanyi Chen. 2019. Adsorption of heavy metal sewage on nano-materials such as titanate/TiO2 added lignin. Results in Physics 12: 405–11.
  • Fu, Y.ve Viraraghavan, T.,. 2001. Fungal decolorization of dye wastewaters: A review. Bioresource Technology, 79, 251-262
  • Golkhah, S.,Mousavi, H.Z., Shirkhanloo, H. veKhaligh, A., 2017. Removal of Pb(II) and Cu(II) Ions from Aqueous Solutions by Cadmium Sulfide Nanoparticles. International Journal of Nanoscience and Nanotechnology, 13(2), 105-117.
  • Hamaloğlu, K.Ö., Sağ, E., Kip, Ç., Şenlik, E., Kaya, B.S., Tuncel, A. 2019. Magnetic-porous microspheres with synergistic catalytic activity of small-sized gold nanoparticles and titania matrix. Frontiers of Chemical Science and Engineering, 13(3), 574-585.
  • Karkare, M.M.,2014. Choice of precursor not affecting the size of anatase TiO2 nanoparticles but affecting morphology under broader view. International Nano Letters,4(3), 111
  • Lee, S.M., Laldawngliana, C. ve Tiwari, D.,. 2012. Iron oxide nano-particles-immobilized-sand material in the treatment of Cu(II), Cd(II) and Pb(II) contaminated waste waters. Chemical Engineering Journal, 195-196, 103-111.
  • Lei, X.F., Xue, X.X. ve Yang, H.H.,. 2014. Preparation and characterization of Ag-doped TiO2 nanomaterials and their photocatalytic reduction of Cr(VI) under visible light. Applied Surface Science, 321, 396-403.
  • Li, X., Dai, X., Takahashi, J., Li, N., Jin, J., Dai, L. ve Dong, B.,2014. New insight into chemical changes of dissolved organic matter during anaerobic digestion of dewatered sewage sludge using EEM-PARAFAC and two-dimensional FTIR correlation spectroscopy. Bioresource Technology, 159, 412--420
  • Lin, C., Zhu, W. ve Han, J. 2013. Strength and Leachability of Solidified Sewage Sludge with Different Additives. Journal of Materials in Civil Engineering, 25(11), 1594–1601.
  • Liu, D.,, Sun, D. ve Li. Y., 2011. Removal of Cu(II) and Cd(II) from aqueous solutions by polyaniline on sawdust. Separation Science and Technology, 46(2), 321-29.
  • Moftakhar, M. K., Yaftian, M.R. veGhorbanloo, M., 2016. Adsorption efficiency, thermodynamics and kinetics of Schiff base-modified nanoparticles for removal of heavy metals. International Journal of Environmental Science and Technology, 13(7), 1707–1722.
  • Nguyen, N.V., Jeong, J., ve Lee, J.C., 2013. Removal of chromium(VI) from the leachate of electronic scrap using non-ionic Amberlite XAD-7HP resin. Journal of Chemical Technology and Biotechnology 88(6): 1014–22.
  • Okieimen, F.E., Sogbaike, C.E. veEbhoaye, J.E., 2005. Removal of cadmium and copper ions from aqueous solution with cellulose graft copolymers. Separation and Purification Technology, 44(1), 85–89.
  • Ozdes, D.,Duran, C. ve Senturk, H.B.,. 2011. Adsorptive removal of Cd(II) and Pb(II) ions from aqueous solutions by using Turkish illitic clay. Journal of Environmental Management, 92, 3082-3090
  • Plohl,O., Finšgar , M., Gyergyek, S., Ajdnik, U., Ban, I ve Zemljič, L.F.,. 2019. Efficient Copper Removal from an Aqueous Anvironment using a Novel and Hybrid Nanoadsorbent Based on Derived-Polyethyleneimine Linked to Silica Magnetic Nanocomposites. Nanomaterials, 9(2), 209.
  • Sandell, E.B., 1948. Colorimetric Determination of Traces of Gold. Analytical Chemistry, 20(3), 253-256.
  • Senturk, I., Buyukgungor, H. ve Geyikci, F. 2016. Biosorption of phenol from aqueous solutions by the Aspergillus niger biomass: comparison of linear and non-linear regression analysis. Desalination and Water Treatment, 57(41), 19529-19539.
  • Shahwan, T. ve Erten, H.N.. 2002. Thermodynamic parameters of Cs+sorption on natural clays. Journal of Radioanalytical and Nuclear Chemistry, 253, 115-120
  • Sharaf El-Deen, S. E.A. ve Zhang, F.S.,. 2016. Immobilisation of TiO2-nanoparticles on sewage sludge and their adsorption for cadmium removal from aqueous solutions. Journal of Experimental Nanoscience, 11(4), 239–258.
  • Spurr, R.A., ve Myers, H., 1957. Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer. Analytical Chemistry, 29(5), 760–762.
  • Sun, W., Yin, K. ve Yu, X.,. 2013. Effect of natural aquatic colloids on Cu(II) and Pb(II) adsorption by Al2O3 nanoparticles. Chemical Engineering Journal, 225,464-473.
  • Tamez, C., Hernandez, R. ve Parsons, J.G., 2016. Removal of Cu (II) and Pb (II) from aqueous solution using engineered iron oxide nanoparticles. Microchemical Journal, 125, 97-104.
  • Vasei, M., Das, P., Cherfouth, H., Marsan, B. ve Claverie, J.P., 2014. TiO2@C core-shell nanoparticles formed by polymeric nano-encapsulation. Frontiers in Chemistry, 2,47, 1-9
  • Wu, C.H.,2007. Studies of the equilibrium and thermodynamics of the adsorption of Cu2+ onto as-produced and modified carbon nanotubes. Journal of Colloid and Interface Science, 311,338-346
  • Zhou, Y.,, Zhang, Z., Zhang, J. ve Xia, S., 2016. New insight into adsorption characteristics and mechanisms of the biosorbent from waste activated sludge for heavy metals. Journal of Environmental Sciences, 45, 248–256.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Neşe Keklikcioğlu Çakmak 0000-0002-8634-9232

Gamze Topal Canbaz 0000-0001-7615-7627

Publication Date January 15, 2020
Submission Date January 17, 2019
Acceptance Date October 14, 2019
Published in Issue Year 2020 Volume: 10 Issue: 1

Cite

APA Keklikcioğlu Çakmak, N., & Topal Canbaz, G. (2020). TiO2 Nanopartikülü ve TiO2/Aktif Çamur Sentezi ile Sulu Çözeltiden Cu (II) İyonlarının Adsorpsiyonu. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(1), 86-98. https://doi.org/10.17714/gumusfenbil.514285