Research Article
BibTex RIS Cite

Free-standing and Flexible MnO2/Graphene Paper Electrode: A Novel Amperometric Sensor for Dopamine Detection

Year 2020, Volume: 10 Issue: 1, 22 - 34, 15.01.2020
https://doi.org/10.17714/gumusfenbil.562555

Abstract

In this study, free-standing
MnO2 coated reduced graphene oxide (MnO2/rGO) paper with
high flexibility and durability was prepared. As-prepared MnO2/rGO
paper was characterized by scanning electron microscopy-energy-dispersive X-ray
spectroscopy (SEM-EDS), X-ray diffraction spectroscopy (XRD), X-ray
photoelectron spectroscopy (XPS) and Raman spectroscopy. The electrochemical
behavior of dopamine (DA) was investigated on flexible MnO2/rGO
paper with cyclic voltammetry and amperometry methods. Electrochemical results
have shown that the flexible MnO2/rGO paper electrode exhibits
excellent electrocatalytic activity to DA due to its high specific surface
area. In addition, the obtained flexible electrochemical sensor showed a wide
linear range, a low detection limit and a very sensitive response for the amperometric
determination of DA.

References

  • Bromberg-Martin, E.S., Matsumoto, M. ve Hikosaka, O., 2010. Dopamine in Motivational Control: Rewarding, Aversive, and Alerting. Neuron, 68, 815-834.
  • Cançado, L.G., Jorio, A., Ferreira, E.H.M., Stavale, F., Achete, C.A., Capaz, R.B., Moutinho, M.VO., Lombardo, A., Kulmala, T.S. ve Ferrari, A.C., 2011. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett., 11, 3190.
  • Chen, J., Bi, H., Sun, S., Tang, Y., Zhao, W., Lin, T., Wan, D., Huang, F., Zhou, X., Xie, X. ve Jiang, M., 2013. Highly Conductive and Flexible Paper of 1D Silver-Nanowire-Doped Graphene. ACS Applied Materials & Interfaces, 5, 1408−1413.
  • Compton, O.C. ve Nguyen, S.T., 2010. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small, 6, 711–723.
  • Dağcı Kıranşan, K., Aksoy, M. ve Topçu, E., 2018. Flexible and freestanding catalase-Fe3O4/reduced graphene oxide paper: Enzymatic hydrogen peroxide sensor applications. Materials Research Bulletin, 106, 57–65.
  • Dağcı Kıranşan, K. ve Topçu, E., 2018. Free-standing and Flexible MoS2/rGO Paper Electrode for Amperometric Detection of Folic Acid. Electroanalysis, 30, 810–818.
  • Dağcı Kıranşan, K., Topçu, E. ve Alanyalıoğlu, M., 2017. Surface-confined electropolymerization of pyronin Y in the graphene composite paper structure for the amperometric determination of dopamine. Journal of Applied Polymer Science, 134, 45139.
  • Dağcı, K. ve Alanyalıoğlu M., 2016. Preparation of Free-Standing and Flexible Graphene/AgNanoparticles/Poly(pyronin Y) Hybrid Paper Electrode forAmperometric Determination of Nitrite. ACS Applied Materials & Interfaces, 8, 2713−2722.
  • De Benedetto., G., Fico., D., Pennetta., A., Malitesta, C., Nicolardi, G., Lofrumento, D.D., De Nuccio, F. ve Pesa, L.V. 2014. A rapid and simple method for the determination of 3,4-dihydroxyphenylacetic acid, norepinephrine, dopamine, andserotonin in mouse brain homogenate by HPLC with fluorimetric detection. Journal of Pharmaceutical and Biomedical Analysis, 98, 266–270.
  • Demuru, S., Nela, L., Marchack, N., Holmes, S.J., Farmer, D.B. Tulevski, G.S., Lin, Q. ve Deligianni, H. 2018. Scalable Nanostructured Carbon Electrode Arrays for Enhanced Dopamine Detection. ACS Sensors, 3, 799−805.
  • Ding, K.Q., 2009. Cyclic Voltammetrically-prepared MnO2 Coated on an ITO Glass Substrate. Journal of the Chinese Chemical Society, 56, 175-181.
  • El-Dien, F.A.N., Zayed, M.A., Mohamed, G.G. ve El-Nahas, R.G., 2005. Two Spectrophotometric Assays for Dopamine Derivatives in Pharmaceutical Products and in Biological Samples of Schizophrenic Patients Using Copper Tetramine Complex and Triiodide Reagent. Journal of Biomedicine and Biotechnology, 1, 1–9.
  • Feng, X., Zhang, Y., Song, J., Chen, N., Zhou, J., Huang, Z., Ma,Y., Zhang, L. ve Wang, L., 2015a. MnO2/Graphene Nanocomposites for Nonenzymatic Electrochemical Detection of Hydrogen Peroxide. Electroanalysis, 27, 353–359.
  • Feng, X., Zhang, Y., Zhou, J., Li, Y., Chen, S., Zhang, L., Ma, Y., Wang, L. ve Yan, X., 2015b. Three-dimensional nitrogen-doped graphene as an ultrasensitive electrochemical sensor for the detection of dopamine. Nanoscale, 7, 2427-2432.
  • Gao, F., Cai, X., Wang, X., Gao, C., Liu, S., Gao, F. ve Wang, Q., 2013. Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sensors and Actuators B: Chemical, 186, 380–387.
  • Grieshaber, D., MacKenzie, R., Vörös, J. ve Reimhult, E., 2008. Electrochemical Biosensors-Sensor Principles and Architectures. Sensors, 8, 1400-1458.
  • Hummers, W. ve Offeman, R.E. J. 1958. Preparation of graphitic oxide. Journal of the American Chemical Society, 80, 1339-1339.
  • Kailasa, S.K. ve Wu, H.F., 2013. Recent Advances in Mass Spectrometry for the Identification of Neurochemicals and their Metabolites in Biofluids. Current Neuropharmacology, 11, 436-464.
  • Kannan, P.K., Moshkalev, S.A. ve Rout, C. S., 2016. Highly sensitive and selective electrochemical dopamine sensing properties of multilayer graphene nanobeltsNanotechnology, 27, 075504.
  • Kriks, S., Shim, J.W., Piao, J., Ganat, Y.M., Wakeman, D.R., Xie, Z., Carrilo-Reid, L., Auyeung, G., Antonacci, C., Buch, A., Yang, L., Beal, M.F., Surmeier, D.J., Kordower, J.H., Tabar, V. ve Studer, L., 2011. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature, 480, 547-551.
  • Lan, Y., Yuan, F., Fereja, T.H., Wang, C., Lou, B., Li, J. ve Xu G., 2019. Chemiluminescence of Lucigenin/Riboflavin and Its Application for Selective and Sensitive Dopamine Detection. Analytical Chemistry, 91, 2135−2139.
  • Li, B.R., Hsieh, Y.J., Chen, Y.X., Chung, Y.T., Pan, C.Y. ve Chen, T.S., 2013. An Ultrasensitive Nanowire-Transistor Biosensor for Detecting Dopamine Release from Living PC12 Cells under Hypoxic Stimulation. Journal of the American Chemical Society, 135, 16034-16037.
  • Li, W., Xu, K., Li, B., Sun, J., Jiang, F., Yu, Z., Zou, R., Chen, Z. ve Hu, J., 2014. MnO2 Nanoflower Arrays with High Rate Capability for Flexible Supercapacitors. ChemElectroChem, 1, 1003–1007.
  • Liang, J., Zhao, Y., Guo. L. ve Li, L., 2012. Flexible Free-Standing Graphene/SnO2 Nanocomposites Paper for Li-Ion Battery. ACS Applied Materials and Interfaces, 4, 5742−5748.
  • Liu, F., Deng, Y., Han, X., Hu, W. ve Zhong, C., 2016. Electrodeposition of metals and alloys from ionic liquids. Journal of Alloys and Compounds, 654,163-170.
  • Liu, M., He, S. ve Chen, W., 2014. Co3O4 nanowires supported on 3D N-doped carbon foam as an electrochemical sensing platform for efficient H2O2 detection. Nanoscale, 6, 11769-11776.
  • Liu, W., Ge, H. ve Gu, Z., 2018. Electrochemical Deposition Tailors the Catalytic Performance of MnO2-Based Micromotors. Small, 14, 1802771.
  • Liu, Y.L., Liu, R., Qin, Y., Qiu, Q. F., Chen, Z., Cheng, S.B. ve Huang, W.H., 2018. Flexible Electrochemical Urea Sensor Based on Surface Molecularly Imprinted Nanotubes for Detection of Human Sweat, Analytical Chemistry, 90, 13081-13087.
  • Manivel, A., Ilayaraja, N., Velayutham, D. ve Noel, M., 2007. Medium effects on the electro-deposition of MnO2 on glassy carbon electrode: A comparative study in alkane, perfluoro alkane carboxylic acids and methanesulphonic acid. Electrochimica Acta, 52, 7841–7848.
  • Meng, X., Lu, L. ve Sun, C., 2018. Green Synthesis of Three-Dimensional MnO2/Graphene Hydrogel Composites as a High-Performance Electrode Material for Supercapacitors. ACS Applied Materials. and Interfaces, 10, 16474−16481.
  • Sheng, Q., Qiao, X. ve Zheng, J., 2018. The Hybrid of Gold Nanoparticles and 3D Flower-like MnO2 Nanostructure with Enhanced Activity for Detection of Hydrogen Peroxide. Electroanalysis, 30, 137–145.
  • Sheng, Z.H., Zheng, X.Q., Xu, J.Y., Bao, W.J., Wang, F.B. ve Xia, X.H., 2012. Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid. Biosensors and Bioelectronics, 34, 125–131.
  • Topçu, E., Dağcı Kıranşan, K., 2018. Flexible and Free-standing PtNLs-MoS2/Reduced Graphene Oxide Composite Paper: A High-Performance Rolled Paper Catalyst for Hydrogen Evolution Reaction. ChemistrySelect, 3, 5941–5949.
  • Topçu, E., Dağcı, K. ve Alanyalıoğlu, M., 2016. Free-standing Graphene/Poly(methylene blue)/AgNPs Composite Paper for Electrochemical Sensing of NADH. Electroanalysis, 28, 1–13.
  • Volkow, N.D., Wise R.A. ve Baler, R., 2017. The dopamine motive system: implications for drug and food addiction. Nature Reviews Neuroscience, 18, 741-752.
  • Wang, H. ve He, Y., 2017. Recent Advances in Silicon Nanomaterial-Based Fluorescent Sensors. Sensors, 17, 268.
  • Wang, Y.C., Cokeliler, D. ve Gunasekaran, S., 2015. Reduced Graphene Oxide/Carbon Nanotube/Gold Nanoparticles Nanocomposite Functionalized Screen-Printed Electrode for Sensitive Electrochemical Detection of Endocrine Disruptor Bisphenol A. Electroanalysis, 27, 2527–2536.
  • Wen, D., Liu, W., Herrmann, A.K., Haubold, D., Holzschuh, M., Simon, F. ve Eychmüller, A., 2016. Simple and Sensitive Colorimetric Detection of Dopamine Based on Assembly of Cyclodextrin-Modified Au Nanoparticles. Small, 12, 2439–2442.
  • Wiench, P., González, Z., Menéndez, R., Grzyb, B. ve Gryglewicz, G., 2018. Beneficial impact of oxygen on the electrochemical performance of dopamine sensors based on N-doped reduced graphene oxides. Sensors and Actuators B: Chemical, 257, 143–153.
  • Xiao, F., Li, Y., Zan, X., Liao, K., Xu, R. ve Duan, H., 2012a. Growth of Metal–Metal Oxide Nanostructures on Freestanding Graphene Paper for Flexible Biosensors. Adv. Funct. Mater., 22, 2487–2494.
  • Xiao, F., Song J., Gao, H. Zan, X., Xu, R. ve Duan, H., 2012b. Coating Graphene Paper with 2D-Assembly of Electrocatalytic Nanoparticles: A Modular Approach toward High-Performance Flexible Electrodes. ACS Nano, 6, 100–110.
  • Yang, L., Liu, D., Huang, J. ve You, T., 2014. Simultaneous determination of dopamine, ascorbic acid and uric acidat electrochemically reduced graphene oxide modified electrode. Sensors and Actuators B:Chemical, 193, 166–172.
  • Yuan, Q., Liu, Y., Ye, C., Sun, H., Dai, D., Wei, Q., Lai, G., Wu, T., Yu, A., Fu,. L., Chee, K. W.A. ve Lin, C.T., 2018. Highly stable and regenerative graphene–diamond hybrid electrochemicalbiosensor for fouling target dopamine detection. Biosensors and Bioelectronics, 111, 117–123.
  • Zhang, K., Liu, Y., Wang, Y., Zhang, R. Liu, J. Wei, J., Qian, H., Qian, K., Chen, R. ve Liu B., 2018. Quantitative SERS Detection of Dopamine in Cerebrospinal Fluid by Dual-Recognition-Induced Hot Spot Generation. ACS Applied Materials and Interfaces, 10, 15388−15394.
  • Zhang, M., Halder, A., Hou, C., Ulstrup, J. ve Chi, Q., 2016. Free-standing and flexible graphene papers as disposable non-enzymatic electrochemical sensors. Bioelectrochemistry, 109, 87–94.

Serbest Duran ve Esnek MnO2/Grafen Kağıt Elektrot: Dopamin Tayini İçin Yeni Tip Amperometrik Sensör

Year 2020, Volume: 10 Issue: 1, 22 - 34, 15.01.2020
https://doi.org/10.17714/gumusfenbil.562555

Abstract

Bu
çalışmada, serbest duran, yüksek esneklik ve dayanıklılık özelliğine sahip, yüzeyi
MnO2 kaplı indirgenmiş grafen oksit (MnO2/rGO) kağıt
hazırlanmıştır. Elde edilen MnO2/rGO kağıt, taramalı elektron
mikroskobu-enerji dağılımlı X-ışını spektroskopisi (SEM-EDS), X-ışını kırınım
spektroskopisi (XRD), X-ışını foto elektron spektroskopisi (XPS) ve Raman
spektroskopisi gibi teknikler ile karakterize edilmiştir. Dopaminin (DA)
elektrokimyasal davranışı, esnek MnO2/rGO kağıt üzerinde, dönüşümlü
voltametri ve amperometri metotları ile incelenmiştir. Elektrokimyasal sonuçlar,
esnek MnO2/rGO kağıt elektrotun yüksek spesifik yüzey alanına sahip
olmasından dolayı, DA'ya karşı mükemmel elektrokatalitik aktivite sergilediğini
göstermiştir. Ayrıca, elde edilen esnek elektrokimyasal sensör, DA'nın amperometrik
tayininde; geniş bir doğrusal aralık, düşük tayin sınırı ve oldukça hassas tepki
göstermiştir.

References

  • Bromberg-Martin, E.S., Matsumoto, M. ve Hikosaka, O., 2010. Dopamine in Motivational Control: Rewarding, Aversive, and Alerting. Neuron, 68, 815-834.
  • Cançado, L.G., Jorio, A., Ferreira, E.H.M., Stavale, F., Achete, C.A., Capaz, R.B., Moutinho, M.VO., Lombardo, A., Kulmala, T.S. ve Ferrari, A.C., 2011. Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies. Nano Lett., 11, 3190.
  • Chen, J., Bi, H., Sun, S., Tang, Y., Zhao, W., Lin, T., Wan, D., Huang, F., Zhou, X., Xie, X. ve Jiang, M., 2013. Highly Conductive and Flexible Paper of 1D Silver-Nanowire-Doped Graphene. ACS Applied Materials & Interfaces, 5, 1408−1413.
  • Compton, O.C. ve Nguyen, S.T., 2010. Graphene Oxide, Highly Reduced Graphene Oxide, and Graphene: Versatile Building Blocks for Carbon-Based Materials. Small, 6, 711–723.
  • Dağcı Kıranşan, K., Aksoy, M. ve Topçu, E., 2018. Flexible and freestanding catalase-Fe3O4/reduced graphene oxide paper: Enzymatic hydrogen peroxide sensor applications. Materials Research Bulletin, 106, 57–65.
  • Dağcı Kıranşan, K. ve Topçu, E., 2018. Free-standing and Flexible MoS2/rGO Paper Electrode for Amperometric Detection of Folic Acid. Electroanalysis, 30, 810–818.
  • Dağcı Kıranşan, K., Topçu, E. ve Alanyalıoğlu, M., 2017. Surface-confined electropolymerization of pyronin Y in the graphene composite paper structure for the amperometric determination of dopamine. Journal of Applied Polymer Science, 134, 45139.
  • Dağcı, K. ve Alanyalıoğlu M., 2016. Preparation of Free-Standing and Flexible Graphene/AgNanoparticles/Poly(pyronin Y) Hybrid Paper Electrode forAmperometric Determination of Nitrite. ACS Applied Materials & Interfaces, 8, 2713−2722.
  • De Benedetto., G., Fico., D., Pennetta., A., Malitesta, C., Nicolardi, G., Lofrumento, D.D., De Nuccio, F. ve Pesa, L.V. 2014. A rapid and simple method for the determination of 3,4-dihydroxyphenylacetic acid, norepinephrine, dopamine, andserotonin in mouse brain homogenate by HPLC with fluorimetric detection. Journal of Pharmaceutical and Biomedical Analysis, 98, 266–270.
  • Demuru, S., Nela, L., Marchack, N., Holmes, S.J., Farmer, D.B. Tulevski, G.S., Lin, Q. ve Deligianni, H. 2018. Scalable Nanostructured Carbon Electrode Arrays for Enhanced Dopamine Detection. ACS Sensors, 3, 799−805.
  • Ding, K.Q., 2009. Cyclic Voltammetrically-prepared MnO2 Coated on an ITO Glass Substrate. Journal of the Chinese Chemical Society, 56, 175-181.
  • El-Dien, F.A.N., Zayed, M.A., Mohamed, G.G. ve El-Nahas, R.G., 2005. Two Spectrophotometric Assays for Dopamine Derivatives in Pharmaceutical Products and in Biological Samples of Schizophrenic Patients Using Copper Tetramine Complex and Triiodide Reagent. Journal of Biomedicine and Biotechnology, 1, 1–9.
  • Feng, X., Zhang, Y., Song, J., Chen, N., Zhou, J., Huang, Z., Ma,Y., Zhang, L. ve Wang, L., 2015a. MnO2/Graphene Nanocomposites for Nonenzymatic Electrochemical Detection of Hydrogen Peroxide. Electroanalysis, 27, 353–359.
  • Feng, X., Zhang, Y., Zhou, J., Li, Y., Chen, S., Zhang, L., Ma, Y., Wang, L. ve Yan, X., 2015b. Three-dimensional nitrogen-doped graphene as an ultrasensitive electrochemical sensor for the detection of dopamine. Nanoscale, 7, 2427-2432.
  • Gao, F., Cai, X., Wang, X., Gao, C., Liu, S., Gao, F. ve Wang, Q., 2013. Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sensors and Actuators B: Chemical, 186, 380–387.
  • Grieshaber, D., MacKenzie, R., Vörös, J. ve Reimhult, E., 2008. Electrochemical Biosensors-Sensor Principles and Architectures. Sensors, 8, 1400-1458.
  • Hummers, W. ve Offeman, R.E. J. 1958. Preparation of graphitic oxide. Journal of the American Chemical Society, 80, 1339-1339.
  • Kailasa, S.K. ve Wu, H.F., 2013. Recent Advances in Mass Spectrometry for the Identification of Neurochemicals and their Metabolites in Biofluids. Current Neuropharmacology, 11, 436-464.
  • Kannan, P.K., Moshkalev, S.A. ve Rout, C. S., 2016. Highly sensitive and selective electrochemical dopamine sensing properties of multilayer graphene nanobeltsNanotechnology, 27, 075504.
  • Kriks, S., Shim, J.W., Piao, J., Ganat, Y.M., Wakeman, D.R., Xie, Z., Carrilo-Reid, L., Auyeung, G., Antonacci, C., Buch, A., Yang, L., Beal, M.F., Surmeier, D.J., Kordower, J.H., Tabar, V. ve Studer, L., 2011. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature, 480, 547-551.
  • Lan, Y., Yuan, F., Fereja, T.H., Wang, C., Lou, B., Li, J. ve Xu G., 2019. Chemiluminescence of Lucigenin/Riboflavin and Its Application for Selective and Sensitive Dopamine Detection. Analytical Chemistry, 91, 2135−2139.
  • Li, B.R., Hsieh, Y.J., Chen, Y.X., Chung, Y.T., Pan, C.Y. ve Chen, T.S., 2013. An Ultrasensitive Nanowire-Transistor Biosensor for Detecting Dopamine Release from Living PC12 Cells under Hypoxic Stimulation. Journal of the American Chemical Society, 135, 16034-16037.
  • Li, W., Xu, K., Li, B., Sun, J., Jiang, F., Yu, Z., Zou, R., Chen, Z. ve Hu, J., 2014. MnO2 Nanoflower Arrays with High Rate Capability for Flexible Supercapacitors. ChemElectroChem, 1, 1003–1007.
  • Liang, J., Zhao, Y., Guo. L. ve Li, L., 2012. Flexible Free-Standing Graphene/SnO2 Nanocomposites Paper for Li-Ion Battery. ACS Applied Materials and Interfaces, 4, 5742−5748.
  • Liu, F., Deng, Y., Han, X., Hu, W. ve Zhong, C., 2016. Electrodeposition of metals and alloys from ionic liquids. Journal of Alloys and Compounds, 654,163-170.
  • Liu, M., He, S. ve Chen, W., 2014. Co3O4 nanowires supported on 3D N-doped carbon foam as an electrochemical sensing platform for efficient H2O2 detection. Nanoscale, 6, 11769-11776.
  • Liu, W., Ge, H. ve Gu, Z., 2018. Electrochemical Deposition Tailors the Catalytic Performance of MnO2-Based Micromotors. Small, 14, 1802771.
  • Liu, Y.L., Liu, R., Qin, Y., Qiu, Q. F., Chen, Z., Cheng, S.B. ve Huang, W.H., 2018. Flexible Electrochemical Urea Sensor Based on Surface Molecularly Imprinted Nanotubes for Detection of Human Sweat, Analytical Chemistry, 90, 13081-13087.
  • Manivel, A., Ilayaraja, N., Velayutham, D. ve Noel, M., 2007. Medium effects on the electro-deposition of MnO2 on glassy carbon electrode: A comparative study in alkane, perfluoro alkane carboxylic acids and methanesulphonic acid. Electrochimica Acta, 52, 7841–7848.
  • Meng, X., Lu, L. ve Sun, C., 2018. Green Synthesis of Three-Dimensional MnO2/Graphene Hydrogel Composites as a High-Performance Electrode Material for Supercapacitors. ACS Applied Materials. and Interfaces, 10, 16474−16481.
  • Sheng, Q., Qiao, X. ve Zheng, J., 2018. The Hybrid of Gold Nanoparticles and 3D Flower-like MnO2 Nanostructure with Enhanced Activity for Detection of Hydrogen Peroxide. Electroanalysis, 30, 137–145.
  • Sheng, Z.H., Zheng, X.Q., Xu, J.Y., Bao, W.J., Wang, F.B. ve Xia, X.H., 2012. Electrochemical sensor based on nitrogen doped graphene: Simultaneous determination of ascorbic acid, dopamine and uric acid. Biosensors and Bioelectronics, 34, 125–131.
  • Topçu, E., Dağcı Kıranşan, K., 2018. Flexible and Free-standing PtNLs-MoS2/Reduced Graphene Oxide Composite Paper: A High-Performance Rolled Paper Catalyst for Hydrogen Evolution Reaction. ChemistrySelect, 3, 5941–5949.
  • Topçu, E., Dağcı, K. ve Alanyalıoğlu, M., 2016. Free-standing Graphene/Poly(methylene blue)/AgNPs Composite Paper for Electrochemical Sensing of NADH. Electroanalysis, 28, 1–13.
  • Volkow, N.D., Wise R.A. ve Baler, R., 2017. The dopamine motive system: implications for drug and food addiction. Nature Reviews Neuroscience, 18, 741-752.
  • Wang, H. ve He, Y., 2017. Recent Advances in Silicon Nanomaterial-Based Fluorescent Sensors. Sensors, 17, 268.
  • Wang, Y.C., Cokeliler, D. ve Gunasekaran, S., 2015. Reduced Graphene Oxide/Carbon Nanotube/Gold Nanoparticles Nanocomposite Functionalized Screen-Printed Electrode for Sensitive Electrochemical Detection of Endocrine Disruptor Bisphenol A. Electroanalysis, 27, 2527–2536.
  • Wen, D., Liu, W., Herrmann, A.K., Haubold, D., Holzschuh, M., Simon, F. ve Eychmüller, A., 2016. Simple and Sensitive Colorimetric Detection of Dopamine Based on Assembly of Cyclodextrin-Modified Au Nanoparticles. Small, 12, 2439–2442.
  • Wiench, P., González, Z., Menéndez, R., Grzyb, B. ve Gryglewicz, G., 2018. Beneficial impact of oxygen on the electrochemical performance of dopamine sensors based on N-doped reduced graphene oxides. Sensors and Actuators B: Chemical, 257, 143–153.
  • Xiao, F., Li, Y., Zan, X., Liao, K., Xu, R. ve Duan, H., 2012a. Growth of Metal–Metal Oxide Nanostructures on Freestanding Graphene Paper for Flexible Biosensors. Adv. Funct. Mater., 22, 2487–2494.
  • Xiao, F., Song J., Gao, H. Zan, X., Xu, R. ve Duan, H., 2012b. Coating Graphene Paper with 2D-Assembly of Electrocatalytic Nanoparticles: A Modular Approach toward High-Performance Flexible Electrodes. ACS Nano, 6, 100–110.
  • Yang, L., Liu, D., Huang, J. ve You, T., 2014. Simultaneous determination of dopamine, ascorbic acid and uric acidat electrochemically reduced graphene oxide modified electrode. Sensors and Actuators B:Chemical, 193, 166–172.
  • Yuan, Q., Liu, Y., Ye, C., Sun, H., Dai, D., Wei, Q., Lai, G., Wu, T., Yu, A., Fu,. L., Chee, K. W.A. ve Lin, C.T., 2018. Highly stable and regenerative graphene–diamond hybrid electrochemicalbiosensor for fouling target dopamine detection. Biosensors and Bioelectronics, 111, 117–123.
  • Zhang, K., Liu, Y., Wang, Y., Zhang, R. Liu, J. Wei, J., Qian, H., Qian, K., Chen, R. ve Liu B., 2018. Quantitative SERS Detection of Dopamine in Cerebrospinal Fluid by Dual-Recognition-Induced Hot Spot Generation. ACS Applied Materials and Interfaces, 10, 15388−15394.
  • Zhang, M., Halder, A., Hou, C., Ulstrup, J. ve Chi, Q., 2016. Free-standing and flexible graphene papers as disposable non-enzymatic electrochemical sensors. Bioelectrochemistry, 109, 87–94.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Ezgi Topçu 0000-0003-1506-9089

Publication Date January 15, 2020
Submission Date May 9, 2019
Acceptance Date September 30, 2019
Published in Issue Year 2020 Volume: 10 Issue: 1

Cite

APA Topçu, E. (2020). Serbest Duran ve Esnek MnO2/Grafen Kağıt Elektrot: Dopamin Tayini İçin Yeni Tip Amperometrik Sensör. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(1), 22-34. https://doi.org/10.17714/gumusfenbil.562555