Research Article
BibTex RIS Cite

Biyoyakıt Bütanolün Metal Organik Kafes (MOF) içeren Karışık Matrisli UiO-66/PVA Membranlar Kullanılarak Pervaporasyon Prosesi ile Dehidrasyonu

Year 2020, Volume: 10 Issue: 1, 275 - 285, 15.01.2020
https://doi.org/10.17714/gumusfenbil.615234

Abstract

Bu çalışmada geleceğin önemli bir biyoyakıt
maddesi olarak görülen bütanolün pervaporasyon ile dehidrasyonu hedeflenmiştir.
Bu amaçla UiO-66 yüklü karma matris PVA membranlar sentezlenmiştir. Membranlar çözeltiden
döküm ve solvent buharlaştırma tekniği kullanılarak hazırlanmıştır. Saf PVA
membrana UiO-66 ilavesinin membranın kimyasal bağ yapısında meydana getirdiği
değişim FTIR ile analiz edilmiştir. Membranların morfolojik yapıları ise SEM
analizleri ile belirlenmiştir. Membranların besleme karışımındaki bileşenlere ilgisini
belirlemek için solvent tutma deneyleri yapılarak su ve bütanol tutma
kapasiteleri belirlenmiştir. UiO-66 miktarının, besleme su konsantrasyonunun ve
operasyon sıcaklığının membranın ayırma performansına etkisi incelenmiştir. En
iyi ayırma performansı ağırlıkça %0.5 UiO-66 yükleme oranı, ağırlıkça %5
besleme su konsantrasyonu ve 40oC operasyon sıcaklığında elde
edilmiştir.

Supporting Institution

Bursa Teknik Üniversitesi Bilimsel Araştırma Projeleri birimi

Project Number

182N04

Thanks

Bu çalışma Bursa Teknik Üniversitesi Bilimsel Araştırma Projeleri birimi tarafından 182N04 numaralı proje kapsamında desteklenmiştir.

References

  • Baker, R.W., 2000. Encyclopedia of Separation Science, In Wilson, I.D., Adlard E.D., Cooke M., Poole C. F. (Eds.), Academic Press.Germany. Pp. 205-205.
  • Basile, A., De Falco M., Centi, G. ve Iaquaniello, G., 2016. Membrane Reactor Engineering: Applications for a Greener Process Industry, Wiley, United Kingdom, 344 p.
  • Dey, C., Kundu, T., Biswal, B.P., Mallick, A. ve Banerjee, R., 2013. Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. Acta Crystallographica Section B, 70, 3-10.
  • Dong, Z., Liu, G., Liu, S., Liu, Z. ve Jin, W., 2014. High performance ceramic hollow fiber supported PDMS composite pervaporation membrane for bio-butanol recovery. Journal of Membrane Science, 450, 38-47.
  • Furukawa, H., Cordova, K.E., O'Keeffe, M. ve Yaghi, O.M., 2013. The chemistry and applications of metal-organic frameworks. Science, 341, 1230444.
  • Gallego, L.T., Edwards, E., Lobiundo, G. ve Freitas dos Santos, L., 2002. Dehydration of water/t-butanol mixtures by pervaporation: comparative study of commercially available polymeric, microporous silica and zeolite membranes. Journal of Membrane Science, 197(1-2), 309–319.
  • Guo, W.F., Chung, T.S. ve Matsuura, T. 2004. Pervaporation study on the dehydration of aqueous butanol solutions: a comparison of flux vs. permeance, separation factor vs. selectivity. Journal of Membrane Science, 245(1-2), 199–210.
  • Hua, D., Ong, Y.K., Wang, Y., Yang, T. ve Chung, T.S., 2014. ZIF-90/P84 mixed matrix membranes for pervaporation dehydration of isopropanol. Journal of Membrane Science, 453, 155-167.
  • Huang, A., Bux, H., Steinbach, F. ve Caro, J., 2010. Molecular-Sieve Membrane with Hydrogen Permselectivity: ZIF-22 in LTA Topology Prepared with 3-Aminopropyltriethoxysilane as Covalent Linker. Angewandte Chemie International Edition, 49, 4958-4961.
  • Huang, B., Liu, Q., Caro, J. ve Huang, A., 2014. Iso-butanol dehydration by pervaporation using zeolite LTA membranes prepared on 3-aminopropyltriethoxysilane-modified alumina tubes. Journal of Membrane Science, 455, 200–206.
  • Jalal, T.A., Bettahalli, N.M.S., Le, N.L. ve Nunes, S.P., 2015. Hydrophobic Hyflon AD/Poly(vinylidene fluoride) Membranes for Butanol Dehydration via Pervaporation. Industrial & Engineering Chemistry Research, 54(44), 11180–11187.
  • Jin, H., Mo, K., Wen, F. ve Li, Y., 2019. Preparation and pervaporation performance of CAU-10-H MOF membranes. Journal of Membrane Science, 577, 129-136.
  • Liu, S., Liu, G., Zhao, X. ve Jin, W., 2013. Hydrophobic-ZIF-71 filled PEBA mixed matrix membranes for recovery of biobutanol via pervaporation. Journal of Membrane Science, 446, 181–188.
  • Liu, X., Li, Y., Liu, Y., Zhu, G., Liu, J. ve Yang, W., 2011. Capillary supported ultrathin homogeneous silicalite-poly(dimethylsiloxane) nanocomposite membrane for bio-butanol recovery. Journal of Membrane Science, 369(1-2), 228-232.
  • Liu, X., Demir, N.K., Wu, Z. ve Li, K., 2015. Highly Water-Stable Zirconium Metal–Organic Framework UiO-66 Membranes Supported on Alumina Hollow Fibers for Desalination. Journal of the American Chemical Society, 137(22), 6999-7002.
  • Mao, H., Zhen, H.G., Ahmad, A., Zhang, A.S. ve Zhao, Z.P., 2019. In situ fabrication of MOF nanoparticles in PDMS membrane via interfacial synthesis for enhanced ethanol permselective pervaporation. Journal of Membrane Science, 573, 344-358.
  • Miyamoto, M., Hori, K., Goshima, T., Takaya, N., Oumi, Y. ve Uemiya, S., 2017. An Organoselective Zirconium-Based Metal-Organic-Framework UiO-66 Membrane for Pervaporation. European Journal of Inorganic Chemistry, 2017(14), 2094-2099.
  • Niemistö, J., Kujawski, W. ve Keiski, R.L., 2013. Pervaporation performance of composite poly(dimethyl siloxane) membrane for butanol recovery from model solutions. Journal of Membrane Science, 434, 55-64.
  • Pfromm, P.H., Amanor-Boadu, V., Nelson, R., Vadlani, P. ve Madl, R., 2010. Bio-butanol vs. bio-ethanol: A technical and economic assessment for corn and switchgrass fermented by yeast or Clostridium acetobutylicum. Biomass and Bioenergy, 34(4), 515–524.
  • Scharnagl, N., Peinemann, K.V., Wenzlaff, A., Schwarz, H.H. ve Behling, R.D., 1996. Dehydration of organic compounds with SYMPLEX composite membranes. Journal of Membrane Science, 113(1), 1-5.
  • Shi, G.M., Yang, T. ve Chung, T.S., 2012. Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols. Journal of Membrane Science, 415-416, 577-586.
  • Tang, W., Lou, H., Li, Y., Kong, X., Wu, Y. ve Gu, X., 2019. Ionic liquid modified graphene oxide-PEBA mixed matrix membrane for pervaporation of butanol aqueous solutions. Journal of Membrane Science, 581 (1), 93-104.
  • Tsou, C.-H., An, Q.F., Lo, S.C., De Guzman, M., Hung, W.S., Hu, C.C., Lee, K.R. ve Lai, J.Y. 2015. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. Journal of Membrane Science, 477, 93–100.
  • Tu, T.N., Nguyen, M.V., Nguyen, H.L., Yuliarto, B., Cordova K.E. ve Demir S., 2018. Designing bipyridine-functionalized zirconium metal–organic frameworks as a platform for clean energy and other emerging applications. Coordination Chemistry Reviews, 364, 33-50.
  • Xu, Y.M. ve Chung, T.S., 2017. High-performance UiO-66/polyimide mixed matrix membranes for ethanol, isopropanol and n-butanol dehydration via pervaporation. Journal of Membrane Science, 531, 16-26.
  • Wang, N., Zhang, G., Wang, L., Li, J., An, Q. ve Ji, S., 2017. Pervaporation dehydration of acetic acid using NH2 -UiO-66/PEI mixed matrix membranes. Separation and Purification Technology, 186, 20–27.
  • Wu, G., Li, Y., Geng, Y., Lu, X. ve Jia, Z., 2018. Adjustable pervaporation performance of Zr-MOFs/poly(vinyl alcohol) mixed matrix membranes. Journal of Chemical Technology and Biotechnology. 94(3), 973-981.

Dehydration of Biofuel Butanol Using Mixed Matrix PVA/UiO-66 Membranes Containing Metal Organic Framework By Pervaporation Process

Year 2020, Volume: 10 Issue: 1, 275 - 285, 15.01.2020
https://doi.org/10.17714/gumusfenbil.615234

Abstract

In this study, it was aimed to dehydration of
butanol which has been seen as biofuel of future by pervaporation. For this
purpose, UiO-66 loaded mixed matrix PVA membranes were synthesized.  Membranes were prepared by using solution
casting and solvent evaporation method. The change of chemical bonds of
pristine membrane with addition of UiO-66 was analyzed by using FTIR. Morphological
structure of membrane was determined by SEM analysis. In order to determine the
affinity of membranes on components in feed mixture, solvent uptake test had
been done.  Effects of UiO-66 amount,
feed water concentration and operation temperature were investigated on
separation performance. The best separation performance had been determined as 0.5
wt.% of UiO-66 loading amount, 5 wt.% of feed water concentration and 40oC
of temperature.

Project Number

182N04

References

  • Baker, R.W., 2000. Encyclopedia of Separation Science, In Wilson, I.D., Adlard E.D., Cooke M., Poole C. F. (Eds.), Academic Press.Germany. Pp. 205-205.
  • Basile, A., De Falco M., Centi, G. ve Iaquaniello, G., 2016. Membrane Reactor Engineering: Applications for a Greener Process Industry, Wiley, United Kingdom, 344 p.
  • Dey, C., Kundu, T., Biswal, B.P., Mallick, A. ve Banerjee, R., 2013. Crystalline metal-organic frameworks (MOFs): synthesis, structure and function. Acta Crystallographica Section B, 70, 3-10.
  • Dong, Z., Liu, G., Liu, S., Liu, Z. ve Jin, W., 2014. High performance ceramic hollow fiber supported PDMS composite pervaporation membrane for bio-butanol recovery. Journal of Membrane Science, 450, 38-47.
  • Furukawa, H., Cordova, K.E., O'Keeffe, M. ve Yaghi, O.M., 2013. The chemistry and applications of metal-organic frameworks. Science, 341, 1230444.
  • Gallego, L.T., Edwards, E., Lobiundo, G. ve Freitas dos Santos, L., 2002. Dehydration of water/t-butanol mixtures by pervaporation: comparative study of commercially available polymeric, microporous silica and zeolite membranes. Journal of Membrane Science, 197(1-2), 309–319.
  • Guo, W.F., Chung, T.S. ve Matsuura, T. 2004. Pervaporation study on the dehydration of aqueous butanol solutions: a comparison of flux vs. permeance, separation factor vs. selectivity. Journal of Membrane Science, 245(1-2), 199–210.
  • Hua, D., Ong, Y.K., Wang, Y., Yang, T. ve Chung, T.S., 2014. ZIF-90/P84 mixed matrix membranes for pervaporation dehydration of isopropanol. Journal of Membrane Science, 453, 155-167.
  • Huang, A., Bux, H., Steinbach, F. ve Caro, J., 2010. Molecular-Sieve Membrane with Hydrogen Permselectivity: ZIF-22 in LTA Topology Prepared with 3-Aminopropyltriethoxysilane as Covalent Linker. Angewandte Chemie International Edition, 49, 4958-4961.
  • Huang, B., Liu, Q., Caro, J. ve Huang, A., 2014. Iso-butanol dehydration by pervaporation using zeolite LTA membranes prepared on 3-aminopropyltriethoxysilane-modified alumina tubes. Journal of Membrane Science, 455, 200–206.
  • Jalal, T.A., Bettahalli, N.M.S., Le, N.L. ve Nunes, S.P., 2015. Hydrophobic Hyflon AD/Poly(vinylidene fluoride) Membranes for Butanol Dehydration via Pervaporation. Industrial & Engineering Chemistry Research, 54(44), 11180–11187.
  • Jin, H., Mo, K., Wen, F. ve Li, Y., 2019. Preparation and pervaporation performance of CAU-10-H MOF membranes. Journal of Membrane Science, 577, 129-136.
  • Liu, S., Liu, G., Zhao, X. ve Jin, W., 2013. Hydrophobic-ZIF-71 filled PEBA mixed matrix membranes for recovery of biobutanol via pervaporation. Journal of Membrane Science, 446, 181–188.
  • Liu, X., Li, Y., Liu, Y., Zhu, G., Liu, J. ve Yang, W., 2011. Capillary supported ultrathin homogeneous silicalite-poly(dimethylsiloxane) nanocomposite membrane for bio-butanol recovery. Journal of Membrane Science, 369(1-2), 228-232.
  • Liu, X., Demir, N.K., Wu, Z. ve Li, K., 2015. Highly Water-Stable Zirconium Metal–Organic Framework UiO-66 Membranes Supported on Alumina Hollow Fibers for Desalination. Journal of the American Chemical Society, 137(22), 6999-7002.
  • Mao, H., Zhen, H.G., Ahmad, A., Zhang, A.S. ve Zhao, Z.P., 2019. In situ fabrication of MOF nanoparticles in PDMS membrane via interfacial synthesis for enhanced ethanol permselective pervaporation. Journal of Membrane Science, 573, 344-358.
  • Miyamoto, M., Hori, K., Goshima, T., Takaya, N., Oumi, Y. ve Uemiya, S., 2017. An Organoselective Zirconium-Based Metal-Organic-Framework UiO-66 Membrane for Pervaporation. European Journal of Inorganic Chemistry, 2017(14), 2094-2099.
  • Niemistö, J., Kujawski, W. ve Keiski, R.L., 2013. Pervaporation performance of composite poly(dimethyl siloxane) membrane for butanol recovery from model solutions. Journal of Membrane Science, 434, 55-64.
  • Pfromm, P.H., Amanor-Boadu, V., Nelson, R., Vadlani, P. ve Madl, R., 2010. Bio-butanol vs. bio-ethanol: A technical and economic assessment for corn and switchgrass fermented by yeast or Clostridium acetobutylicum. Biomass and Bioenergy, 34(4), 515–524.
  • Scharnagl, N., Peinemann, K.V., Wenzlaff, A., Schwarz, H.H. ve Behling, R.D., 1996. Dehydration of organic compounds with SYMPLEX composite membranes. Journal of Membrane Science, 113(1), 1-5.
  • Shi, G.M., Yang, T. ve Chung, T.S., 2012. Polybenzimidazole (PBI)/zeolitic imidazolate frameworks (ZIF-8) mixed matrix membranes for pervaporation dehydration of alcohols. Journal of Membrane Science, 415-416, 577-586.
  • Tang, W., Lou, H., Li, Y., Kong, X., Wu, Y. ve Gu, X., 2019. Ionic liquid modified graphene oxide-PEBA mixed matrix membrane for pervaporation of butanol aqueous solutions. Journal of Membrane Science, 581 (1), 93-104.
  • Tsou, C.-H., An, Q.F., Lo, S.C., De Guzman, M., Hung, W.S., Hu, C.C., Lee, K.R. ve Lai, J.Y. 2015. Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration. Journal of Membrane Science, 477, 93–100.
  • Tu, T.N., Nguyen, M.V., Nguyen, H.L., Yuliarto, B., Cordova K.E. ve Demir S., 2018. Designing bipyridine-functionalized zirconium metal–organic frameworks as a platform for clean energy and other emerging applications. Coordination Chemistry Reviews, 364, 33-50.
  • Xu, Y.M. ve Chung, T.S., 2017. High-performance UiO-66/polyimide mixed matrix membranes for ethanol, isopropanol and n-butanol dehydration via pervaporation. Journal of Membrane Science, 531, 16-26.
  • Wang, N., Zhang, G., Wang, L., Li, J., An, Q. ve Ji, S., 2017. Pervaporation dehydration of acetic acid using NH2 -UiO-66/PEI mixed matrix membranes. Separation and Purification Technology, 186, 20–27.
  • Wu, G., Li, Y., Geng, Y., Lu, X. ve Jia, Z., 2018. Adjustable pervaporation performance of Zr-MOFs/poly(vinyl alcohol) mixed matrix membranes. Journal of Chemical Technology and Biotechnology. 94(3), 973-981.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Derya Ünlü 0000-0001-5240-5876

Project Number 182N04
Publication Date January 15, 2020
Submission Date September 4, 2019
Acceptance Date December 31, 2019
Published in Issue Year 2020 Volume: 10 Issue: 1

Cite

APA Ünlü, D. (2020). Biyoyakıt Bütanolün Metal Organik Kafes (MOF) içeren Karışık Matrisli UiO-66/PVA Membranlar Kullanılarak Pervaporasyon Prosesi ile Dehidrasyonu. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(1), 275-285. https://doi.org/10.17714/gumusfenbil.615234