Research Article
BibTex RIS Cite

Production of Wall Tiles Containing Ulexite Waste at Different Sintering Temperatures

Year 2020, Volume: 10 Issue: 2, 463 - 473, 15.04.2020
https://doi.org/10.17714/gumusfenbil.655170

Abstract

Experimental compositions were prepared by the additions of ulexite
concentrator waste to a standard wall tile body sintered at different
temperatures. Tests of linear firing shrinkage, water absorption, and fired
bending strength (eğilme mukavemeti) were done. XRD analyses were conducted to
determine major crystalline phases in wall tile bodies. SEM-EDX analyses were
performed
to
study the microstructural evolution of the
standard and experimental wall tile bodies. Colorimetric analyses were also made. The wall tile body containing 5 weight percent ulexite
concentrator waste fired at 925 oC for 6 minutes was determined to
be the optimal composition with 0.60 % of linear firing shrinkage, 17.66 % of
water absorption, and 208.60 of kg/cm2 fired bending strength
(eğilme mukavemeti) .
Sintering
temperature was reduced from 1182 oC of industrial practice down to
925 oC.
Utilization of ulexite
concentrator waste in tile bodies will help reduce energy costs in favour of
the environment and economy.

References

  • Alp, Y., 2005. Ceramic Tile, The Survey Report of the Foreign Trade Board of the Istanbul Chamber of Commerce, Istanbul, 24p.
  • Baele, S. M., 1998. Borate is an Important Ingredient in Glass Fiber Manufacture. Glass, 75, 420-427.
  • Bayça, S.U., 2009. Effects of the Addition of Ulexite to the Sintering Behaviour of a Ceramic Body, Journal of Ceramic Processing Resolutions, 10, 162-166.
  • Boncukcuoğlu, R., Kocakerim, M.M., Kocadağistan E. and Yılmaz M.T., 2003. Recovery of Boron of the Sieve Reject in the Production of Borax, Resources Conservation Recycling, 37, 147–157.
  • Carter, C.B. and Norton, M.G., 2013. Ceramic Materials: Science and Engineering: New York, Springer-Verlag, 766p.
  • Coble, R.L., 1961. Sintering Crystalline Solids, Journal of Applied Physics, 32, 793-799.
  • Coble, R.L. and Burke, J.E., 1963. Sintering in Ceramics, in: Progress in Ceramic Science Volume 3, J.E. Burke (ed.), Pergamon Press, London, pp. 197-251.
  • Çelik, H., 2015. Recycling of Boron Waste to Develop Wall Tile in Turkey, Transactions of Indian Ceramic Society, 74, 108-116.
  • Ediz N., Yurdakul, H. and Issi, A., 2004. Use of Tincal Waste as a Replacement for Calcite in Wall Tile Production, Key Engineering Materials, 264-268, 2457-2460.
  • Ediz, N. and Yurdakul, A., 2009. Characterization of Porcelain Tile Bodies with Colemanite Waste Added as a New Sintering Agent, Journal of Ceramic Processing Resolutions., 10, 414-422.
  • Glendenning, M. D. and Lee, W. E., 1996. Microstructural Development on Crystallising Hot-pressed Pellets of Cordierite Melt-derived Glass Containing B2O3 and P2O5, Journal of American Ceramic Society, 79, 705–713.
  • Hunter, R.S. and Harold, R.W, 1987. The Measurement of Appearance: New York, John Wiley and Sons, Inc., 432p.
  • Karasu, B., Kaya, G. and Yurdakul, H., 2002. Effect of the Etibor Kırka Borax Company’s Concentration and Derivation Wastes on the Properties of Wall Tile Body, Proceedings of 1st International Boron Symposium, Kütahya, p. 224.
  • Karasu, B., Kaya, G., Yurdakul, H. and Topkaya, A., 2002. Use of Borax Solid Wastes in Wall Tile Bodies and its Effect on Microstructure, Boron Symposium, Balıkesir, Book of abstracts, p.18.
  • Karasu, B., Kaya, G., Yurdakul, H. and Topkaya, A., 2002. The Efforts on Utilization of Borax Solid Wastes in wall Tile Bodies, 104th Annual Meeting & Exposition of the American Ceramic Society, St. Louis, Book of abstracts, p. 274.
  • Karasu, B., Yurdakul, H. and Kaya, G., 2004. Use of Borax Solid Wastes in the Receipes of Wall Tile Bodies as a Fluxing Agent and Their Effects on the Microstructures, Journal of Turkish Ceramic Federation, 6, 135-145 (in Turkish).
  • Karasu, B., 2007. Use of Borax Solid Wastes in Ceramics’ World, Proceedings of the Xth Conference and Exhibition of the European Ceramic Society, Berlin, p. 1773.
  • Kavas, T., Christogerou, A., Pontikes, Y. and Angelopoulos, G.N., 2011. Valorisation of Different Types of Boron-Containing Wastes for the Production of Lightweight Aggregates, Journal of Hazardeous Materials, 185, 1381–1389.
  • Köseoğlu, K., 2017. Effect of Ulexite Concentrator Waste on the Physical and Mechanical Properties and Sintering Behaviour of Floor Tile Bodies, Clay Minerals, 52, 97–105.
  • Kurama, S., Kara, A. and Kurama, A., 2006. The Effect of Boron Waste in Phase and Microstructural Development of a Terracotta Body During Firing, Journal of European Ceramic Society, 26, 755–760.
  • Kurama, S., Kara, A. and Kurama, A. 2007. Investigation of Borax Waste Behaviour in Tile Production, Journal of European Ceramic Society, 27, 1715-1720.
  • Levinkas, G. J., 1964. Boron, Metallo-Boron Compounds and Boranes, in: Toxicology of Boron Compounds, R. M. Adams (Ed.), Interscience Publishers, New York, pp. 700-765.
  • Önal, G. and Burat, F., 2008. Boron Mining and Processing in Turkey, Gospodarka Surowcamı Mineralnymi, 24, 49-60.
  • Sezzi, G., 2004. World Production and Consumption of Ceramic Tiles, Ceramic World Review., 58, 54–71.
  • Singer, F. and Singer, S.S., 1984. Industrial Ceramics: New York, Chapman and Hall Ltd, 1139p.
  • Thümmler, F. and Thomma, W., 1967. The Sintering Process, International. Materials Reviews.,12, 69-108.
  • TS EN ISO 10545-2 2000. Ceramic Tiles Part 2, Determination of Dimensions and Surface Quality.
  • TS EN ISO 10545-3 2000. Ceramic Tile Part 2, Determination of Water Absorption, Apparent Porosity, Apparent Relative Density and Bulk Density.
  • TS EN ISO 10545-4 2000. Ceramic Tile Part 4, Determination of Modulus of Rupture and Breaking Strength.
  • URL-1, http://en.etimaden.gov.tr/.r12 February 2018).
  • URL-2, http://www.hunterlab.com/appnotes/an08_96a.pdf.

Üleksit Atığı İçeren Duvar Karolarının Farklı Sinterleşme Sıcaklıklarında Üretimi

Year 2020, Volume: 10 Issue: 2, 463 - 473, 15.04.2020
https://doi.org/10.17714/gumusfenbil.655170

Abstract

Üleksit konsantratör atığının standard duvar karosu bünyesine katılması
ve değişik sıcaklıklarda sinterleşmesiyle deneysel numuneler hazırlanmıştır.
Doğrusal pişme küçülmesi, su absorpsiyonu ve pişme bükülme testleri
yapılmıştır. X-ışınları kırınım analizleri duvar karolarının kristal fazlarını
tayin etmekte; SEM-EDX analizleri standard ve deneysel duvar karolarının mikro
yapılarındaki değişimlerin anlaşılmasında kullanılmıştır. Renk analizleri de
gerçekleştirilmiştir. 925°C de 6 dakika pişirilen %5 üleksit konsantratör atığı
%0.6 doğrusal pişme küçülmesi, %17.66 su emme ve 208.6 kg/cm2 pişme
bükülmesi değerleriyle optimum konsantratör atık derişimi olarak
belirlenmiştir. Endüstriyel üretimde 1182°C olan sinterleşme sıcaklığı 925°C’
ye düşürülmüştür. Üleksit konsantratör atığının duvar karolarında kullanımı
enerji maliyetlerini düşürmeye yardım ederek ekonomi ve çevreye yarar
sağlayacaktır.

References

  • Alp, Y., 2005. Ceramic Tile, The Survey Report of the Foreign Trade Board of the Istanbul Chamber of Commerce, Istanbul, 24p.
  • Baele, S. M., 1998. Borate is an Important Ingredient in Glass Fiber Manufacture. Glass, 75, 420-427.
  • Bayça, S.U., 2009. Effects of the Addition of Ulexite to the Sintering Behaviour of a Ceramic Body, Journal of Ceramic Processing Resolutions, 10, 162-166.
  • Boncukcuoğlu, R., Kocakerim, M.M., Kocadağistan E. and Yılmaz M.T., 2003. Recovery of Boron of the Sieve Reject in the Production of Borax, Resources Conservation Recycling, 37, 147–157.
  • Carter, C.B. and Norton, M.G., 2013. Ceramic Materials: Science and Engineering: New York, Springer-Verlag, 766p.
  • Coble, R.L., 1961. Sintering Crystalline Solids, Journal of Applied Physics, 32, 793-799.
  • Coble, R.L. and Burke, J.E., 1963. Sintering in Ceramics, in: Progress in Ceramic Science Volume 3, J.E. Burke (ed.), Pergamon Press, London, pp. 197-251.
  • Çelik, H., 2015. Recycling of Boron Waste to Develop Wall Tile in Turkey, Transactions of Indian Ceramic Society, 74, 108-116.
  • Ediz N., Yurdakul, H. and Issi, A., 2004. Use of Tincal Waste as a Replacement for Calcite in Wall Tile Production, Key Engineering Materials, 264-268, 2457-2460.
  • Ediz, N. and Yurdakul, A., 2009. Characterization of Porcelain Tile Bodies with Colemanite Waste Added as a New Sintering Agent, Journal of Ceramic Processing Resolutions., 10, 414-422.
  • Glendenning, M. D. and Lee, W. E., 1996. Microstructural Development on Crystallising Hot-pressed Pellets of Cordierite Melt-derived Glass Containing B2O3 and P2O5, Journal of American Ceramic Society, 79, 705–713.
  • Hunter, R.S. and Harold, R.W, 1987. The Measurement of Appearance: New York, John Wiley and Sons, Inc., 432p.
  • Karasu, B., Kaya, G. and Yurdakul, H., 2002. Effect of the Etibor Kırka Borax Company’s Concentration and Derivation Wastes on the Properties of Wall Tile Body, Proceedings of 1st International Boron Symposium, Kütahya, p. 224.
  • Karasu, B., Kaya, G., Yurdakul, H. and Topkaya, A., 2002. Use of Borax Solid Wastes in Wall Tile Bodies and its Effect on Microstructure, Boron Symposium, Balıkesir, Book of abstracts, p.18.
  • Karasu, B., Kaya, G., Yurdakul, H. and Topkaya, A., 2002. The Efforts on Utilization of Borax Solid Wastes in wall Tile Bodies, 104th Annual Meeting & Exposition of the American Ceramic Society, St. Louis, Book of abstracts, p. 274.
  • Karasu, B., Yurdakul, H. and Kaya, G., 2004. Use of Borax Solid Wastes in the Receipes of Wall Tile Bodies as a Fluxing Agent and Their Effects on the Microstructures, Journal of Turkish Ceramic Federation, 6, 135-145 (in Turkish).
  • Karasu, B., 2007. Use of Borax Solid Wastes in Ceramics’ World, Proceedings of the Xth Conference and Exhibition of the European Ceramic Society, Berlin, p. 1773.
  • Kavas, T., Christogerou, A., Pontikes, Y. and Angelopoulos, G.N., 2011. Valorisation of Different Types of Boron-Containing Wastes for the Production of Lightweight Aggregates, Journal of Hazardeous Materials, 185, 1381–1389.
  • Köseoğlu, K., 2017. Effect of Ulexite Concentrator Waste on the Physical and Mechanical Properties and Sintering Behaviour of Floor Tile Bodies, Clay Minerals, 52, 97–105.
  • Kurama, S., Kara, A. and Kurama, A., 2006. The Effect of Boron Waste in Phase and Microstructural Development of a Terracotta Body During Firing, Journal of European Ceramic Society, 26, 755–760.
  • Kurama, S., Kara, A. and Kurama, A. 2007. Investigation of Borax Waste Behaviour in Tile Production, Journal of European Ceramic Society, 27, 1715-1720.
  • Levinkas, G. J., 1964. Boron, Metallo-Boron Compounds and Boranes, in: Toxicology of Boron Compounds, R. M. Adams (Ed.), Interscience Publishers, New York, pp. 700-765.
  • Önal, G. and Burat, F., 2008. Boron Mining and Processing in Turkey, Gospodarka Surowcamı Mineralnymi, 24, 49-60.
  • Sezzi, G., 2004. World Production and Consumption of Ceramic Tiles, Ceramic World Review., 58, 54–71.
  • Singer, F. and Singer, S.S., 1984. Industrial Ceramics: New York, Chapman and Hall Ltd, 1139p.
  • Thümmler, F. and Thomma, W., 1967. The Sintering Process, International. Materials Reviews.,12, 69-108.
  • TS EN ISO 10545-2 2000. Ceramic Tiles Part 2, Determination of Dimensions and Surface Quality.
  • TS EN ISO 10545-3 2000. Ceramic Tile Part 2, Determination of Water Absorption, Apparent Porosity, Apparent Relative Density and Bulk Density.
  • TS EN ISO 10545-4 2000. Ceramic Tile Part 4, Determination of Modulus of Rupture and Breaking Strength.
  • URL-1, http://en.etimaden.gov.tr/.r12 February 2018).
  • URL-2, http://www.hunterlab.com/appnotes/an08_96a.pdf.
There are 31 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Kemal Köseoğlu 0000-0003-1116-9103

Hakan Cengizler 0000-0001-5982-7692

Lina İsrail 0000-0002-0560-1839

Publication Date April 15, 2020
Submission Date December 4, 2019
Acceptance Date March 4, 2020
Published in Issue Year 2020 Volume: 10 Issue: 2

Cite

APA Köseoğlu, K., Cengizler, H., & İsrail, L. (2020). Üleksit Atığı İçeren Duvar Karolarının Farklı Sinterleşme Sıcaklıklarında Üretimi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(2), 463-473. https://doi.org/10.17714/gumusfenbil.655170