Research Article
BibTex RIS Cite

İtki Dalgalarının Oluşumunda Ölçek Etkisi, Hareket Süresi ve Çarpma Hızının Model Deneyler ve 3 Boyutlu Nümerik Simülasyonlarla Değerlendirilmesi

Year 2020, Volume: 10 Issue: 2, 514 - 525, 15.04.2020
https://doi.org/10.17714/gumusfenbil.680377

Abstract

İtki dalgaları, baraj veya göl alanlarında heyelan,
kaya düşmesi, çığ, moloz ve çamur akması gibi doğal jeolojik olayların
tetiklemesi sonucu meydana gelmektedir. Oluşan dalganın hızı ve yüksekliği
yamaç boyunca eğim aşağı hareket eden kütlenin suya çarpma hızına bağlıdır.
Çarpma hızı ise yamaç eğimine, hareket eden kütlenin konumuna, fiziksel ve
mekanik özelliklerine bağlıdır. İtki dalgalarının özellikleri, sayısal ve
ampirik yaklaşımlarla belirleneceği gibi hidrolik modellerle de
belirlenebilmektedir. Bu çalışmada ise ölçek etkisi ve hareket eden kütlenin
suya çarpma hızları farklı yöntemler kullanılarak modellenmiş ve elde edilen
sonuçlar karşılaştırılmıştır. Çalışma kapsamında tasarlanan bir hidrolik model
üzerinde fiziksel deneyler yapılmış, 0.4 m3 hacimli bir havuz, yükleme
rampası, yüksek hızlı kamera ve akışkan olarak su kullanılmıştır. Farklı rampa
açılarında hareket eden suyun havuz tabanına ulaşma süresi, çarpma hızı ve
havuzda oluşan dalga yüksekliği değerleri hesaplanmıştır. Aynı model, 3 boyutlu
nümerik çözümleme yapan FLOW-3D programı kullanılarak farklı ölçeklerde
tanımlanmış (0.1x, 1x, 10x, 100x, 1000x), farklı yoğunlukta akışkanlar
(800-2000 kg/m3) kullanılarak çözümleme yapılmış ve serbest su
seviyesi yükseklikleri tespit edilmiştir. Nümerik ve hidrolik model
kullanılarak tanımlanan parametreler ampirik ilişkiler kullanılarak da
belirlenmiştir. Yapılan nümerik çalışmalardan elde edilen sonuçlara göre
hidrolik model hangi ölçekte olursa olsun elde edilen sonuçların ölçekten
etkilenmediği tespit edilmiştir. Her 3 yöntem kullanılarak belirlenen, su
hareket hızı, çarpma hızı ve maksimum dalga yüksekliği değerleri arasındaki
farkın %2-3 arasında değiştiği tespit edilmiştir. Elde edilen sonuçlar basit
rezervuarlar için ve kısa mesafeler için ölçek etkisinin önemsiz olduğunu ve
hesaplamalarda ampirik ilişkilerin yeterli olabileceğini göstermiştir.

References

  • Carvalho, R.F. ve Carmo, J.S.A., 2006. “Numerical and Experimental Modelling of the Generation and Propagation of Waves Caused by Landslides into Reservoirs and Their Effects on Dams”, Proc. River Flow 2006, ed. R. M. L. Ferreira, E. C. T. L. Alves, J. G. B. A. Leal and A. H. Cardoso,. Vol. 1, pp.483-492. Lisbon, Portugal.
  • Di Risio M., Sammarco P., 2008. Analytical Modeling of Landslide-Generated Waves. J Waterw Port Coast Ocean Eng 134(1):53–60. doi:10.1061/(ASCE)0733-950. (2008)134:1(53).
  • Ersoy H., Karahan M., Gelişli K., Akgün A., Anılan T., Sünnetci M.O., Yahşi B.K., 2019. Modelling of the Landslide-Induced Impulse Waves in the Artvin Dam Reservoir by Empirical Approach and 3D Numerical Simulation Eng. Geol., 249 (2019), pp. 112-128, 10.1016/j.enggeo.2018.12.025.
  • Flow Science, Inc. FLOW-3D Version 11.2 Documentation, Santa Fe, Newmexio, USA, 2016
  • Fritz H.M., 2002. Initial Phase of Landslide Generated Impulse Waves. PhD Thesis Swiss Federal Institute of Technology, Zu¨rich, Switzerland.
  • Gabl R., Seibl J., Gems B., Aufleger M., 2015. 3-D-Numerical Approach to Simulate an Avalanche Impact into a Reservoir. Nat Hazards Earth Syst Sci, Discuss 3:4121–4157. doi:10.5194/nhessd-3-4121-2015.
  • Grilli S.T., Vogelmann S., Watts P., 2002. Development of a 3D Numerical Wave Tank for Modeling Tsunami Generation by Underwater Landslides. Eng Anal Bound Elem 26(4):301–313. doi:10.1016/S0955-7997(01)00113-8.
  • Heller, V., 2007. Landslide Generated Impulse Waves—Prediction of Near Field Characteristics. PhD thesis, ETH Zurich.
  • Heller, V., Hager W.H., and Minor H.E., 2008. Scale Effects in Subaerial Landslide Generated Impulse Waves, Exp. Fluids, 44, 691_703, doi:10.1007/s00348-007-0427-7.
  • Heller, V., Hager, W.H., Minor H.E., 2009. Landslide Generated Impulse Waves in Reservoirs—Basics and Computation. Mitteilungen 211 Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW), ETH Zürich.
  • Heller V., Kinnear R.D., 2010. Discussion of (2009) Experimental Investigation of Impact Generated Tsunami; Related to a Potential Rock Slide, Western Norway by Sælevik G, Jensen A, Pedersen G (Coastal Eng 56:897-906). Coast Eng 57(8):773–777. Hughes S., 1993. Physical Models and Laboratory Techniques in Coastal Engineering. World Scientific, Singapore. https://tr.qwertyu.wiki/wiki/List of Historical Tsunamis.
  • Körner H.J., 1976. Reichweite und Geschwindigkeit von Bergstürzen und Fliessschneelawinen. Rock Mech. 8, 225–256. https://doi.org/10.1007/BF012593.
  • Macfarlane D.F., and Jenks D.G., 1996. Stabilisation and Performance of No. 5 Creek Slide, Clyde Power Project, New Zealand. In Proceedings of the 7th International Symposium on Landslides, Trondheim. Edited by K. Sennest. A. A. Balkema, Rotterdam. Vol. 3. Pp. 1739-1746.
  • Montagna F., Bellotti G., Di Risio M., 2011. 3D Numerical Modeling of Landslide-Generated Tsunamis Around a Conical Island. Nat Hazards 58(1):591–608.
  • Müller D.R., 1995. Auflaufen und Überschwappen von Impulswellen an Talsperren. Mitteilungen 137, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW), ETH Zürich.
  • Nieuwkoop J.C., Van C., 2007. Experimental and Numerical Modelling of Tsunami Waves Generated by Landslides, Msc Thesis, Delft University of Technology. Özalp S., 2018. Tsunami: Yerküremizin Dev Dalgaları. Doğal Kaynaklar ve Ekonomi Bülteni (2018) 26: 33-39.
  • Panizzo A., 2004. Physical and Numerical Modelling of Subaerial Landslide Generated Waves, Ph.D. Thesis, Universit`a Degli Studi di L’Aquila, L’Aquila.
  • Panizzo A., De Girolamo P., Petaccia A., 2005. Forecasting Impulse Waves Generated by Subaerial Landslides. J Geophys Res: Oceans (1978–2012), 110(C12).
  • Quecedo M., Pastor M., Herreros M.I., 2004. Numerical Modelling of Impulse Wave Generated by Fast Landslides. International Journal for Numerical Methods in Engineering 59, 1633–1656.
  • Shi C.Q., An Y., Q. ve Liu Q., 2015. Landslide-Generated Impulse Waves in Deep V Channel: Runup and Near Field Characteristics. 7th International Conference on Fluid Mechanics, ICFM7. 126 ( 2015 ) 232 – 236.
  • Solidwork Premium SP5, Concord, Massachusetts, USA, 2016.
  • Sue P., 2007. Modelling of Tsunami Generated by Submarine Landslides. Doctor of Philosophy in Civil Engineering, University of Canterbury, Christchurch New Zealand.
  • Wang F., Zhang Y., Huo Z., Peng X., Wang S., Yamasaki S., 2008. Mechanism for the Rapid Motion of the Qianjiangping Landslide During Reactivation by the First Impoundment of the Three Gorges Dam Reservoir, China. Landslides 2008a;5(4):379e86.
  • Wang L, Chen ZY, Wang NX, Sun P, Yu S, Li SY, Du XH (2016) Modeling Lateral Enlargement in Dam Breaches Using Slope Stability Analysis Based on Circular Slip Mode. Eng Geol 209:70–81.
  • Wiegel R.L., 1964. Oceanographical Engineering (Prentice-Hall, Englewood Cliffs, N.J.).
  • Yin Y., Huang B., Chen X., Liu G., Wang S., 2015. Numerical Analysis of Wave Generated by the Qianjiangping Landslide in Three Gorges Reservoir, China. Landslides;12(2):355e64.
  • Zweifel A., 2004. Impulswellen Effekte der Rutschdichte und der Wassertiefe. Dissertation 15596, ETH Zurich.

Assessment of Scale Effect, Travel Time, Impact Velocity on Forming of Impulse Waves using Model Tests, 3D Numerical Simulations

Year 2020, Volume: 10 Issue: 2, 514 - 525, 15.04.2020
https://doi.org/10.17714/gumusfenbil.680377

Abstract

Impulse waves occur as a result of natural geological events such as
landslides, rock falls, avalanches, rubble and mudflows in dam or lake areas.
The celerity and height of the formed wave depends on the impact velocity of
the mass moving into the water. The impact velocity depends on the slope, the
location of the sliding materials, and their physical and mechanical
properties. The characteristics of the impulse waves can be determined by
numerical and empirical approaches as well as by hydraulic models. In this
study, the scale effect and the slide impact velocity were modeled using
different methods and the results obtained were compared. A hydraulic model,
which was made of a pool of 0.4 m3 volume, loading ramp, high speed camera, and
water as fluid, was designed to carry out the physical experiments within the
scope of the study. The time it takes for the fluid to reach the bottom of the
pool, the impact velocity of the fluid and the wave height were calculated for
various ramp angles.
The
same model has been defined in different scales (0.1x, 1x, 10x, 100x, 1000x)
using FLOW-3D program that performs 3-dimensional numerical analysis. Analysis
were carried out using different density fluids (800-2000 kg/m3),
and values of free surface elevation were determined. The parameters defined
using the numerical and hydraulic model were also determined using empirical
relationships.  According to the results obtained from the
numerical studies, it has been determined that the 
results obtained are not affected by the scale regardless of the scale
of the hydraulic model. It has been determined that the difference between
water celerity, impact velocity and maximum wave height values determined
between all 3 methods varies between 2-3%. The results showed that the scale
effect is insignificant for simple reservoirs and for short distances and
empirical relationships may be sufficient for the calculations.

References

  • Carvalho, R.F. ve Carmo, J.S.A., 2006. “Numerical and Experimental Modelling of the Generation and Propagation of Waves Caused by Landslides into Reservoirs and Their Effects on Dams”, Proc. River Flow 2006, ed. R. M. L. Ferreira, E. C. T. L. Alves, J. G. B. A. Leal and A. H. Cardoso,. Vol. 1, pp.483-492. Lisbon, Portugal.
  • Di Risio M., Sammarco P., 2008. Analytical Modeling of Landslide-Generated Waves. J Waterw Port Coast Ocean Eng 134(1):53–60. doi:10.1061/(ASCE)0733-950. (2008)134:1(53).
  • Ersoy H., Karahan M., Gelişli K., Akgün A., Anılan T., Sünnetci M.O., Yahşi B.K., 2019. Modelling of the Landslide-Induced Impulse Waves in the Artvin Dam Reservoir by Empirical Approach and 3D Numerical Simulation Eng. Geol., 249 (2019), pp. 112-128, 10.1016/j.enggeo.2018.12.025.
  • Flow Science, Inc. FLOW-3D Version 11.2 Documentation, Santa Fe, Newmexio, USA, 2016
  • Fritz H.M., 2002. Initial Phase of Landslide Generated Impulse Waves. PhD Thesis Swiss Federal Institute of Technology, Zu¨rich, Switzerland.
  • Gabl R., Seibl J., Gems B., Aufleger M., 2015. 3-D-Numerical Approach to Simulate an Avalanche Impact into a Reservoir. Nat Hazards Earth Syst Sci, Discuss 3:4121–4157. doi:10.5194/nhessd-3-4121-2015.
  • Grilli S.T., Vogelmann S., Watts P., 2002. Development of a 3D Numerical Wave Tank for Modeling Tsunami Generation by Underwater Landslides. Eng Anal Bound Elem 26(4):301–313. doi:10.1016/S0955-7997(01)00113-8.
  • Heller, V., 2007. Landslide Generated Impulse Waves—Prediction of Near Field Characteristics. PhD thesis, ETH Zurich.
  • Heller, V., Hager W.H., and Minor H.E., 2008. Scale Effects in Subaerial Landslide Generated Impulse Waves, Exp. Fluids, 44, 691_703, doi:10.1007/s00348-007-0427-7.
  • Heller, V., Hager, W.H., Minor H.E., 2009. Landslide Generated Impulse Waves in Reservoirs—Basics and Computation. Mitteilungen 211 Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW), ETH Zürich.
  • Heller V., Kinnear R.D., 2010. Discussion of (2009) Experimental Investigation of Impact Generated Tsunami; Related to a Potential Rock Slide, Western Norway by Sælevik G, Jensen A, Pedersen G (Coastal Eng 56:897-906). Coast Eng 57(8):773–777. Hughes S., 1993. Physical Models and Laboratory Techniques in Coastal Engineering. World Scientific, Singapore. https://tr.qwertyu.wiki/wiki/List of Historical Tsunamis.
  • Körner H.J., 1976. Reichweite und Geschwindigkeit von Bergstürzen und Fliessschneelawinen. Rock Mech. 8, 225–256. https://doi.org/10.1007/BF012593.
  • Macfarlane D.F., and Jenks D.G., 1996. Stabilisation and Performance of No. 5 Creek Slide, Clyde Power Project, New Zealand. In Proceedings of the 7th International Symposium on Landslides, Trondheim. Edited by K. Sennest. A. A. Balkema, Rotterdam. Vol. 3. Pp. 1739-1746.
  • Montagna F., Bellotti G., Di Risio M., 2011. 3D Numerical Modeling of Landslide-Generated Tsunamis Around a Conical Island. Nat Hazards 58(1):591–608.
  • Müller D.R., 1995. Auflaufen und Überschwappen von Impulswellen an Talsperren. Mitteilungen 137, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW), ETH Zürich.
  • Nieuwkoop J.C., Van C., 2007. Experimental and Numerical Modelling of Tsunami Waves Generated by Landslides, Msc Thesis, Delft University of Technology. Özalp S., 2018. Tsunami: Yerküremizin Dev Dalgaları. Doğal Kaynaklar ve Ekonomi Bülteni (2018) 26: 33-39.
  • Panizzo A., 2004. Physical and Numerical Modelling of Subaerial Landslide Generated Waves, Ph.D. Thesis, Universit`a Degli Studi di L’Aquila, L’Aquila.
  • Panizzo A., De Girolamo P., Petaccia A., 2005. Forecasting Impulse Waves Generated by Subaerial Landslides. J Geophys Res: Oceans (1978–2012), 110(C12).
  • Quecedo M., Pastor M., Herreros M.I., 2004. Numerical Modelling of Impulse Wave Generated by Fast Landslides. International Journal for Numerical Methods in Engineering 59, 1633–1656.
  • Shi C.Q., An Y., Q. ve Liu Q., 2015. Landslide-Generated Impulse Waves in Deep V Channel: Runup and Near Field Characteristics. 7th International Conference on Fluid Mechanics, ICFM7. 126 ( 2015 ) 232 – 236.
  • Solidwork Premium SP5, Concord, Massachusetts, USA, 2016.
  • Sue P., 2007. Modelling of Tsunami Generated by Submarine Landslides. Doctor of Philosophy in Civil Engineering, University of Canterbury, Christchurch New Zealand.
  • Wang F., Zhang Y., Huo Z., Peng X., Wang S., Yamasaki S., 2008. Mechanism for the Rapid Motion of the Qianjiangping Landslide During Reactivation by the First Impoundment of the Three Gorges Dam Reservoir, China. Landslides 2008a;5(4):379e86.
  • Wang L, Chen ZY, Wang NX, Sun P, Yu S, Li SY, Du XH (2016) Modeling Lateral Enlargement in Dam Breaches Using Slope Stability Analysis Based on Circular Slip Mode. Eng Geol 209:70–81.
  • Wiegel R.L., 1964. Oceanographical Engineering (Prentice-Hall, Englewood Cliffs, N.J.).
  • Yin Y., Huang B., Chen X., Liu G., Wang S., 2015. Numerical Analysis of Wave Generated by the Qianjiangping Landslide in Three Gorges Reservoir, China. Landslides;12(2):355e64.
  • Zweifel A., 2004. Impulswellen Effekte der Rutschdichte und der Wassertiefe. Dissertation 15596, ETH Zurich.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Murat Karahan 0000-0002-4500-0050

Hakan Ersoy 0000-0001-5556-547X

Tuğçe Anılan 0000-0001-9571-4695

Publication Date April 15, 2020
Submission Date January 27, 2020
Acceptance Date March 30, 2020
Published in Issue Year 2020 Volume: 10 Issue: 2

Cite

APA Karahan, M., Ersoy, H., & Anılan, T. (2020). İtki Dalgalarının Oluşumunda Ölçek Etkisi, Hareket Süresi ve Çarpma Hızının Model Deneyler ve 3 Boyutlu Nümerik Simülasyonlarla Değerlendirilmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(2), 514-525. https://doi.org/10.17714/gumusfenbil.680377