Research Article
BibTex RIS Cite

Pasif Radar Uygulamalarında Çoklu Ardışık OFDM Kanalı Kullanımının Menzil Çözünürlüğüne Etkilerinin İncelenmesi

Year 2020, Volume: 10 Issue: 4, 1049 - 1056, 15.10.2020
https://doi.org/10.17714/gumusfenbil.508017

Abstract

Uzaktan cisim tespiti ve takibi yapabilen sistemlerin performansını arttırmak, kapsama alanını genişletmek ve maliyetini azaltmak için birçok çalışma yapılmaktadır. Pasif radar sistemleri kapsama alanını maliyet etkin olarak arttırabilmek için iyi bir seçenektir. Pasif radarlar, kendilerine ait vericisi bulunmayan ancak ortamda hali hazırda var olan ticari vericileri kullanarak hedef tespit ve takibi yapan sistemlerdir. Bununla birlikte sistemlerin hedef tespit performansı kullanılan ticari vericinin sinyal özelliklerine göre değişmektedir. Sistemlerin integrasyon zamanına bağlı olarak Doppler çözünürlüğü değiştirilebilirken, menzil çözünürlüğü sinyalin bant genişliğine bağlı olarak değişmektedir. Bu makalede, OFDM sinyallerini kullanan pasif radar sistemlerinde çoklu ardışık OFDM kanalı kullanımının menzil çözünürlüğüne etkileri incelenmiştir. Öncelikle OFDM tabanlı bir sinyalin benzetimi yazılım tabanlı radyo ile yapılmıştır ve öz-belirsizlik fonksiyonu analiziyle bu sinyalin menzil çözünürlüğü özellikleri incelenmiştir. Ardından ardışık kanallar eklenerek öz-belirsizlik fonksiyonu analiz edilmiş ve menzil çözünürlüğündeki değişimler gözlemlenmiştir. Ardışık beş OFDM kanalı kullanıldığında menzil çözünürlüğünün korelatif özelliklerini kaybetmeden %48 oranında iyileştirilebileceği gözlemlenmiştir.

References

  • Berger, C. R., Demissie, B., Heckenbach, J., Willett, P., & Zhou, S., 2010. Signal Processing for Passive Radar Using OFDM Waveforms. IEEE Journal of Selected Topics in Signal Processing, 4(1), 226-238.
  • Bloessl, B., Segata, M., Sommer, C., & Dressler, F., 2013. An IEEE 802.11 a/g/p OFDM Receiver for GNU Radio. In Proceedings of the Second Workshop on Software Radio Implementation Forum, 9-16.
  • Brisken, S., Moscadelli, M., Seidel, V., & Schwark, C., 2017. Passive Radar Imaging Using DVB-S2. In Radar Conference (RadarConf), 2017 IEEE, 0552-0556.
  • Colone, F., Falcone, P., Bongioanni, C., & Lombardo, P., 2012. WiFi-Based Passive Bistatic Radar: Data Processing Schemes and Experimental Results. IEEE Transactions on Aerospace and Electronic Systems, 48(2), 1061-1079.
  • Conti, M., Berizzi, F., Martorella, M., Dalle Mese, E., Petri, D., & Capria, A., 2012. High Range Resolution Multichannel DVB-T Passive Radar. IEEE Aerospace and Electronic Systems Magazine, 27(10), 37- 42.
  • Griffiths, H. D., & Baker, C. J., 2005a. Passive Coherent Location Radar Systems. Part 1: Performance Prediction. IEE Proceedings-Radar, Sonar and Navigation, 152(3), 153-159.
  • Griffiths, H. D., & Baker, C. J., 2005. Measurement and Analysis of Ambiguity Functions of Passive Radar Transmissions. In Radar Conference, 2005 IEEE International, pp. 321-325.
  • Lauri, A., Colone, F., Cardinali, R., Bongioanni, C., & Lombardo, P., 2007. Analysis and Emulation of FM Radio Signals for Passive Radar. In Aerospace Conference, 2007 IEEE, pp. 1-10.
  • Lu, Y. L., Tan, D. K. P., & Sun, H. B., 2007. Air Target Detection and Tracking Using a Multi-channel GSM Based Passive Radar. In Waveform Diversity and Design Conference. pp. 122-126.
  • Milani, I., Colone, F., Bongioanni, C., & Lombardo, P., 2018. WiFi Emission-Based vs Passive Radar Localization of Human Targets. In Radar Conference (RadarConf18), 2018 IEEE, 1311-1316.
  • Skolnik, M. I., 1962. Introduction to radar. Radar handbook, 2. Boston: McGraw-Hill.
  • Stein, S., 1981. Algorithms for Ambiguity Function Processing. IEEE Transactions on Acoustics, Speech, and Signal Processing, 29(3), 588-599.
  • Tao, R., Gao, Z., & Wang, Y., 2012. Side peaks interference suppression in DVB-T based passive radar. IEEE Transactions on Aerospace and Electronic Systems, 48(4), 3610-3619.
  • Tasdelen, A. S., & Koymen, H., 2006. Range Resolution Improvement in Passive Coherent Location Radar Systems Using Multiple FM Radio Channels. IET Forum on Waveform Diversity and Design in Communications, Radar and Sonar.
  • Tuysuz, B., Urbina, J., & Lind, F. D., 2013. Development of a Passive VHF Radar System Using Software- Defined Radio for Equatorial Plasma Instability Studies. Radio science, 48(4), 416-426.
  • Tuysuz, B., & Mahmutoglu, Y., 2017. Measurement and Mapping of the GSM-Based Electromagnetic Pollution in the Black Sea Region of Turkey. Electromagnetic biology and medicine, 36(2), 132-140.
  • Tüysüz, B., 2018. Hava Hedeflerinin Tespiti İçin Yakın Gerçek Zamanlı Çoklu Frekans Destekli Pasif Radar Sisteminin Geliştirilmesi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi.
  • URL-1, http://www.gnuradio.org/. 24 Kasım 2018.
  • Zheng, L., & Wang, X., 2017. Super-Resolution Delay-Doppler Estimation for OFDM Passive Radar. IEEE Transactions on Signal Processing, 65(9), 2197-2210.

Effects of the Successive Multiple OFDM Channels on Range Resolution in Passive Radar Applications

Year 2020, Volume: 10 Issue: 4, 1049 - 1056, 15.10.2020
https://doi.org/10.17714/gumusfenbil.508017

Abstract

Studies are carried out to increase the performance of the systems that can perform remote object detection and tracking, to extend the coverage area and to reduce the cost. Many passive radar systems are a good candidate for cost-effective coverage. Passive radar systems are capable of target detection and tracking using commercially available commercial donors without their own transmitter. However, the target detection performance of the systems varies according to the signal characteristics of the commercial transmitter used. While the Doppler resolution of the systems can be changed depending on the integration time, the range resolution varies depending on the bandwidth of the signal. In this article, the effects of multiple consecutive OFDM channel usage on range resolution were investigated in passive radar systems using OFDM signals. First of all, using a software-based radio, an OFDM-based signal was simulated and the range resolution characteristics of this signal were analyzed by self-uncertainty function analysis. Then, sequential channels were added to analyze the self-uncertainty function and changes in range resolution were observed. Since five consecutive channels were used, it was observed that the range resolution could be improved by 42% without losing the correlative properties.

References

  • Berger, C. R., Demissie, B., Heckenbach, J., Willett, P., & Zhou, S., 2010. Signal Processing for Passive Radar Using OFDM Waveforms. IEEE Journal of Selected Topics in Signal Processing, 4(1), 226-238.
  • Bloessl, B., Segata, M., Sommer, C., & Dressler, F., 2013. An IEEE 802.11 a/g/p OFDM Receiver for GNU Radio. In Proceedings of the Second Workshop on Software Radio Implementation Forum, 9-16.
  • Brisken, S., Moscadelli, M., Seidel, V., & Schwark, C., 2017. Passive Radar Imaging Using DVB-S2. In Radar Conference (RadarConf), 2017 IEEE, 0552-0556.
  • Colone, F., Falcone, P., Bongioanni, C., & Lombardo, P., 2012. WiFi-Based Passive Bistatic Radar: Data Processing Schemes and Experimental Results. IEEE Transactions on Aerospace and Electronic Systems, 48(2), 1061-1079.
  • Conti, M., Berizzi, F., Martorella, M., Dalle Mese, E., Petri, D., & Capria, A., 2012. High Range Resolution Multichannel DVB-T Passive Radar. IEEE Aerospace and Electronic Systems Magazine, 27(10), 37- 42.
  • Griffiths, H. D., & Baker, C. J., 2005a. Passive Coherent Location Radar Systems. Part 1: Performance Prediction. IEE Proceedings-Radar, Sonar and Navigation, 152(3), 153-159.
  • Griffiths, H. D., & Baker, C. J., 2005. Measurement and Analysis of Ambiguity Functions of Passive Radar Transmissions. In Radar Conference, 2005 IEEE International, pp. 321-325.
  • Lauri, A., Colone, F., Cardinali, R., Bongioanni, C., & Lombardo, P., 2007. Analysis and Emulation of FM Radio Signals for Passive Radar. In Aerospace Conference, 2007 IEEE, pp. 1-10.
  • Lu, Y. L., Tan, D. K. P., & Sun, H. B., 2007. Air Target Detection and Tracking Using a Multi-channel GSM Based Passive Radar. In Waveform Diversity and Design Conference. pp. 122-126.
  • Milani, I., Colone, F., Bongioanni, C., & Lombardo, P., 2018. WiFi Emission-Based vs Passive Radar Localization of Human Targets. In Radar Conference (RadarConf18), 2018 IEEE, 1311-1316.
  • Skolnik, M. I., 1962. Introduction to radar. Radar handbook, 2. Boston: McGraw-Hill.
  • Stein, S., 1981. Algorithms for Ambiguity Function Processing. IEEE Transactions on Acoustics, Speech, and Signal Processing, 29(3), 588-599.
  • Tao, R., Gao, Z., & Wang, Y., 2012. Side peaks interference suppression in DVB-T based passive radar. IEEE Transactions on Aerospace and Electronic Systems, 48(4), 3610-3619.
  • Tasdelen, A. S., & Koymen, H., 2006. Range Resolution Improvement in Passive Coherent Location Radar Systems Using Multiple FM Radio Channels. IET Forum on Waveform Diversity and Design in Communications, Radar and Sonar.
  • Tuysuz, B., Urbina, J., & Lind, F. D., 2013. Development of a Passive VHF Radar System Using Software- Defined Radio for Equatorial Plasma Instability Studies. Radio science, 48(4), 416-426.
  • Tuysuz, B., & Mahmutoglu, Y., 2017. Measurement and Mapping of the GSM-Based Electromagnetic Pollution in the Black Sea Region of Turkey. Electromagnetic biology and medicine, 36(2), 132-140.
  • Tüysüz, B., 2018. Hava Hedeflerinin Tespiti İçin Yakın Gerçek Zamanlı Çoklu Frekans Destekli Pasif Radar Sisteminin Geliştirilmesi. Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi.
  • URL-1, http://www.gnuradio.org/. 24 Kasım 2018.
  • Zheng, L., & Wang, X., 2017. Super-Resolution Delay-Doppler Estimation for OFDM Passive Radar. IEEE Transactions on Signal Processing, 65(9), 2197-2210.
There are 19 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Büşra Karanfil This is me 0000-0001-7088-2553

Burak Tuysuz This is me 0000-0002-2053-3715

Publication Date October 15, 2020
Submission Date January 4, 2019
Acceptance Date September 19, 2020
Published in Issue Year 2020 Volume: 10 Issue: 4

Cite

APA Karanfil, B., & Tuysuz, B. (2020). Pasif Radar Uygulamalarında Çoklu Ardışık OFDM Kanalı Kullanımının Menzil Çözünürlüğüne Etkilerinin İncelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 10(4), 1049-1056. https://doi.org/10.17714/gumusfenbil.508017