Nanopartikül kolemanit mineralinin ısıl özellikleri ve uygulamada sağlayacağı kazanımlar
Year 2021,
Volume: 11 Issue: 1, 198 - 208, 15.01.2021
Sezai Kutuk
,
Tuba Kutuk
Abstract
Kolemanit minerali (C-3 mm) ve öğütülmüş kolemanit mineralleri (C-75 µm ile C-45 µm tozları) Eti Maden Bigadiç Bor İşletme Müdürlüğünden tedarik edildi. C-3 mm başlangıç malzemesi yüksek enerjili bilyalı değirmende öğütme işlemine tabi tutuldu. Akabinde bu malzeme mikronaltı boyutlu/nano boyutlu partiküller üretebilmek amacıyla ASTM standardındaki boyutu 25 μm olan bir elekten geçirildi (C-25 μm). C-3 mm mineralinin, C-75 µm tozunun, C-45 µm tozunun ve C-25 μm tozunun ısıl özellikleri TermoGravimetri (TG)/Diferansiyel Termal Analiz (DTA) cihazı ile belirlendi. DTA ölçümünde, ilk ayrışma sıcaklığı C-3 mm minerali için 406°C’de yüksek şiddete sahip endotermik bir pik ile gözükürken, C-25 μm tozu için 388°C’de endotermik bir pik ile ortaya çıktı. Diferansiyel TG ölçümünde, ilk ayrışma sıcaklığı C-3 mm minerali için 403°C’de yüksek şiddete sahip dar endotermik bir pik ile belirdi ve C-25 μm tozu için de 388°C’de endotermik bir pik ile ortaya çıktı. Önceki bir çalışmada, C-75 µm, C-45 µm ile C-25 μm tozları Portland çimentolu betona farklı oranlarda ilave edilmiştir. Çalışma sonunda betonun basınç dayanımında belirgin bir artış gözlemlendiği rapor edilmiştir. Bu bulguların nano boyutlu bor mineralleri ile alakalı mühendislik araştırmalarına ışık tutacağı düşünülmektedir.
Supporting Institution
Recep Tayyip Erdoğan Üniversitesi
Project Number
2014.109.03.01
Thanks
Bu çalışmayı finansal olarak destekleyen Recep Tayyip Erdoğan Üniversitesi Bilimsel Araştırma Projeleri Birimine (No: 2014.109.03.01) ve başlangıç malzemelerini temin eden Eti Maden İşletmeleri Genel Müdürlüğüne arz-ı şükran ederiz.
References
- Akpinar, S., Evcin, A. and Ozdemir, Y. (2017). Effect of calcined colemanite additions on properties of hard porcelain body. Ceramics International, 43(11), 8364–8371. https://doi.org/10.1016/j.ceramint.2017.03.178
- Alizadeh, M., Sharifianjazi, F., Haghshenasjazi, E., Aghakhani, M. and Rajabi, L. (2015). Production of nanosized boron oxide powder by high-energy ball milling. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 45(1), 11–14. https://doi.org/10.1080/15533174.2013.797438
- Barluenga, G., Giménez, M., Sepulcre, A. and Palomar, I. (2018). Effect of full scale pumping at early age and on hardened microstructure and properties of SCC with fly ash in hot-dry curing conditions. Construction and Building Materials, 191, 1128–1138. https://doi.org/10.1016/j.conbuildmat.2018.10.110
- Canakci, A., Varol, T., Cuvalci, H., Erdemir, F., Ozkaya, S. and Yalcin, E. D. (2014). Synthesis of novel CuSn10-graphite nanocomposite powders by mechanical alloying. Micro and Nano Letters, 9(2), 109–112. https://doi.org/10.1049/mnl.2013.0715
- Eti Maden İşlemleri Genel Müdürlüğü (2013). Faaliyet Raporu: Bor kullanım alanları. Erişim adresi http://www.sp.gov.tr/upload/xSPRapor/files/DnB8S+Eti_Maden_13_FR.pdf
- Han, W., Ma, Z., Liu, S., Ge, C., Wang, L. and Zhang, X. (2017). Highly-dispersible boron nitride nanoparticles by spray drying and pyrolysis. Ceramics International, 43(13), 10192–10200. https://doi.org/10.1016/j.ceramint.2017.05.045
- Kutuk-Sert, T. (2016). Stability analyses of submicron-boron mineral prepared by mechanical milling process in concrete roads. Construction and Building Materials, 121, 255–264. https://doi.org/10.1016/j.conbuildmat.2016.05.156
- Kutuk, S. (2016). Influence of milling parameters on particle size of ulexite material. Powder Technology, 301, 421–428. https://doi.org/10.1016/j.powtec.2016.06.020
- Kutuk, S. (2017). Öğütülmüş nano boyutlu kolemanit mineralinin elementel ve kristal yapı özellikleri. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(2), 303–313. https://dergipark.org.tr/tr/pub/erzifbed/issue/32383/334656
- Kutuk, S. ve Kutuk-Sert, T. (2017). Effect of PCA on nanosized ulexite material prepared by mechanical milling. Arabian Journal for Science and Engineering, 42(11), 4801–4809. https://doi.org/10.1007/s13369-017-2643-7
- Kutuk, S. and Kutuk-Sert, T. (2019). TEM analysis of submicron colemanite mineral prepared with mechanical milling process. 4. International Conference on Civil Environmental Geology and Mining Engineering (pp.714–720). Trabzon.
- Kutuk, S. and Kutuk-Sert, T. (2020). An examination of nanoparticle colemanite mineral added warm mix asphalt. Construction and Building Materials, 243, 118252. https://doi.org/10.1016/j.conbuildmat.2020.118252
- Liu, J., Chen, H., Guan, B., Liu, K., Wen, J. and Sun, Z. (2018). Influence of mineral nano-fibers on the physical properties of road cement concrete material. Construction and Building Materials, 190, 287–293. https://doi.org/10.1016/j.conbuildmat.2018.09.025
- Lotti, P., Comboni, D., Gigli, L., Carlucci, L., Mossini, E., Macerata, E., Mariani, M. and Gatta, G. D. (2019). Thermal stability and high-temperature behavior of the natural borate colemanite: An aggregate in radiation-shielding concretes. Construction and Building Materials, 203, 679–686. https://doi.org/10.1016/j.conbuildmat.2019.01.123
- Ma, Z., Liu, Y., Cai, Q., Jiang, H. and Yu, L. (2013). Excellent Jc in the low-temperature sintered MgB2 superconductors consisted of uncompleted MgB2 phase and residual Mg. Materials Chemistry and Physics, 141(1), 378–382. https://doi.org/10.1016/j.matchemphys.2013.05.027
- Pancar, E. B. (2016). Beton yol kaplamalarının yüzey sıcaklıklarının düşürülmesi için çözümler. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 4(4), 285-291. https://dergipark.org.tr/tr/pub/gujsc/issue/45198/565995
- Pancar, E. B. and Akpinar, M. V. (2016). Temperature reduction of concrete pavement using glass bead materials. International Journal of Concrete Structures and Materials, 10(1), 39–46. https://doi.org/10.1007/s40069-016-0130-2
- Ríos, J. D., Cifuentes, H., Leiva, C., García, C. and Alba, M. D. (2018). Behavior of High-Strength Polypropylene Fiber-Reinforced Self-Compacting Concrete Exposed to High Temperatures. Journal of Materials in Civil Engineering, 30(11), 04018271. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002491
- Sallı Bideci, Ö. (2016). The effect of high temperature on lightweight concretes produced with colemanite coated pumice aggregates. Construction and Building Materials, 113, 631–640. https://doi.org/10.1016/j.conbuildmat.2016.03.113
- Shariatmadar, F. S. and Pakdehi, S. G. (2017). Synthesis and characterization of aviation turbine kerosene nanofuel containing boron nanoparticles. Applied Thermal Engineering, 112, 1195–1204. https://doi.org/10.1016/j.applthermaleng.2016.09.015
- Uysal, T., Mutlu, H. S. and Erdemoğlu, M. (2016). Effects of mechanical activation of colemanite (Ca2B6O11·5H2O) on its thermal transformations. International Journal of Mineral Processing, 151, 51–58. https://doi.org/10.1016/j.minpro.2016.04.006
- Waclawska, I. (1997a). Thermal behaviour of mechanically amorphized colemanite: I. Thermal decomposition of ground colemanite. Journal of Thermal Analysis, 48(1), 145–154. https://doi.org/10.1007/BF01978974
- Waclawska, I. (1997b). Thermal behaviour of mechanically amorphized colemanite: II. Internal structure reconstitution processes of ground colemanite. Journal of Thermal Analysis, 48(1), 155–161. https://doi.org/10.1007/BF01978975
- Yunlu, K. (2016). Bor Bileşikleri, Sentez Yöntemleri, Özellikleri, Uygulamaları (First ed.). Ankara: BOREN.
Thermal properties of nanoparticle colemanite mineral and its advantages in application
Year 2021,
Volume: 11 Issue: 1, 198 - 208, 15.01.2021
Sezai Kutuk
,
Tuba Kutuk
Abstract
Colemanite mineral (C-3 mm) and milled colemanite minerals (C-75 µm and C-45 µm powders) were obtained from Eti Maden Bigadic Boron Operation Directorate. The C-3 mm initial material was milled in a high-energy ball mill. This material was then sifted using a sieve with a size of 25 μm according to the ASTM standard (C-25 μm) for the purpose of producing submicron-sized/nano-sized particles. Thermal properties of the C-3 mm mineral, C-75 µm powder, C-45 µm powder and C-25 μm powder were examined using ThermoGravimetry (TG)/Differential Thermal Analysis (DTA) device. In DTA measurement, first decomposition temperature appeared with a high intensity endothermic peak at 406°C for the C-3 mm mineral and existed with an endothermic peak at 388°C for the C-25 μm powder. In Differential TG measurement, the first decomposition temperature seemed with a high intensity-narrow endothermic peak at 403°C for the C-3 mm mineral and occurred with an endothermic peak at 388°C for the C-25 μm powder. In a previous study, the C-75 μm, C-45 μm and C-25 μm powders have been added to Portland cement concrete at varying ratios. Based on the results obtained, it was noted that the compressive strength of concrete increases significantly. Such findings are thought to shed light on engineering research related to nano-sized boron minerals.
Project Number
2014.109.03.01
References
- Akpinar, S., Evcin, A. and Ozdemir, Y. (2017). Effect of calcined colemanite additions on properties of hard porcelain body. Ceramics International, 43(11), 8364–8371. https://doi.org/10.1016/j.ceramint.2017.03.178
- Alizadeh, M., Sharifianjazi, F., Haghshenasjazi, E., Aghakhani, M. and Rajabi, L. (2015). Production of nanosized boron oxide powder by high-energy ball milling. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 45(1), 11–14. https://doi.org/10.1080/15533174.2013.797438
- Barluenga, G., Giménez, M., Sepulcre, A. and Palomar, I. (2018). Effect of full scale pumping at early age and on hardened microstructure and properties of SCC with fly ash in hot-dry curing conditions. Construction and Building Materials, 191, 1128–1138. https://doi.org/10.1016/j.conbuildmat.2018.10.110
- Canakci, A., Varol, T., Cuvalci, H., Erdemir, F., Ozkaya, S. and Yalcin, E. D. (2014). Synthesis of novel CuSn10-graphite nanocomposite powders by mechanical alloying. Micro and Nano Letters, 9(2), 109–112. https://doi.org/10.1049/mnl.2013.0715
- Eti Maden İşlemleri Genel Müdürlüğü (2013). Faaliyet Raporu: Bor kullanım alanları. Erişim adresi http://www.sp.gov.tr/upload/xSPRapor/files/DnB8S+Eti_Maden_13_FR.pdf
- Han, W., Ma, Z., Liu, S., Ge, C., Wang, L. and Zhang, X. (2017). Highly-dispersible boron nitride nanoparticles by spray drying and pyrolysis. Ceramics International, 43(13), 10192–10200. https://doi.org/10.1016/j.ceramint.2017.05.045
- Kutuk-Sert, T. (2016). Stability analyses of submicron-boron mineral prepared by mechanical milling process in concrete roads. Construction and Building Materials, 121, 255–264. https://doi.org/10.1016/j.conbuildmat.2016.05.156
- Kutuk, S. (2016). Influence of milling parameters on particle size of ulexite material. Powder Technology, 301, 421–428. https://doi.org/10.1016/j.powtec.2016.06.020
- Kutuk, S. (2017). Öğütülmüş nano boyutlu kolemanit mineralinin elementel ve kristal yapı özellikleri. Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(2), 303–313. https://dergipark.org.tr/tr/pub/erzifbed/issue/32383/334656
- Kutuk, S. ve Kutuk-Sert, T. (2017). Effect of PCA on nanosized ulexite material prepared by mechanical milling. Arabian Journal for Science and Engineering, 42(11), 4801–4809. https://doi.org/10.1007/s13369-017-2643-7
- Kutuk, S. and Kutuk-Sert, T. (2019). TEM analysis of submicron colemanite mineral prepared with mechanical milling process. 4. International Conference on Civil Environmental Geology and Mining Engineering (pp.714–720). Trabzon.
- Kutuk, S. and Kutuk-Sert, T. (2020). An examination of nanoparticle colemanite mineral added warm mix asphalt. Construction and Building Materials, 243, 118252. https://doi.org/10.1016/j.conbuildmat.2020.118252
- Liu, J., Chen, H., Guan, B., Liu, K., Wen, J. and Sun, Z. (2018). Influence of mineral nano-fibers on the physical properties of road cement concrete material. Construction and Building Materials, 190, 287–293. https://doi.org/10.1016/j.conbuildmat.2018.09.025
- Lotti, P., Comboni, D., Gigli, L., Carlucci, L., Mossini, E., Macerata, E., Mariani, M. and Gatta, G. D. (2019). Thermal stability and high-temperature behavior of the natural borate colemanite: An aggregate in radiation-shielding concretes. Construction and Building Materials, 203, 679–686. https://doi.org/10.1016/j.conbuildmat.2019.01.123
- Ma, Z., Liu, Y., Cai, Q., Jiang, H. and Yu, L. (2013). Excellent Jc in the low-temperature sintered MgB2 superconductors consisted of uncompleted MgB2 phase and residual Mg. Materials Chemistry and Physics, 141(1), 378–382. https://doi.org/10.1016/j.matchemphys.2013.05.027
- Pancar, E. B. (2016). Beton yol kaplamalarının yüzey sıcaklıklarının düşürülmesi için çözümler. Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji, 4(4), 285-291. https://dergipark.org.tr/tr/pub/gujsc/issue/45198/565995
- Pancar, E. B. and Akpinar, M. V. (2016). Temperature reduction of concrete pavement using glass bead materials. International Journal of Concrete Structures and Materials, 10(1), 39–46. https://doi.org/10.1007/s40069-016-0130-2
- Ríos, J. D., Cifuentes, H., Leiva, C., García, C. and Alba, M. D. (2018). Behavior of High-Strength Polypropylene Fiber-Reinforced Self-Compacting Concrete Exposed to High Temperatures. Journal of Materials in Civil Engineering, 30(11), 04018271. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002491
- Sallı Bideci, Ö. (2016). The effect of high temperature on lightweight concretes produced with colemanite coated pumice aggregates. Construction and Building Materials, 113, 631–640. https://doi.org/10.1016/j.conbuildmat.2016.03.113
- Shariatmadar, F. S. and Pakdehi, S. G. (2017). Synthesis and characterization of aviation turbine kerosene nanofuel containing boron nanoparticles. Applied Thermal Engineering, 112, 1195–1204. https://doi.org/10.1016/j.applthermaleng.2016.09.015
- Uysal, T., Mutlu, H. S. and Erdemoğlu, M. (2016). Effects of mechanical activation of colemanite (Ca2B6O11·5H2O) on its thermal transformations. International Journal of Mineral Processing, 151, 51–58. https://doi.org/10.1016/j.minpro.2016.04.006
- Waclawska, I. (1997a). Thermal behaviour of mechanically amorphized colemanite: I. Thermal decomposition of ground colemanite. Journal of Thermal Analysis, 48(1), 145–154. https://doi.org/10.1007/BF01978974
- Waclawska, I. (1997b). Thermal behaviour of mechanically amorphized colemanite: II. Internal structure reconstitution processes of ground colemanite. Journal of Thermal Analysis, 48(1), 155–161. https://doi.org/10.1007/BF01978975
- Yunlu, K. (2016). Bor Bileşikleri, Sentez Yöntemleri, Özellikleri, Uygulamaları (First ed.). Ankara: BOREN.