Research Article
BibTex RIS Cite

Synthesis of graphene oxide by modified Hummers method and its effects on Al/GO/n-InP diode performance as interlayer film

Year 2021, Volume: 11 Issue: 1, 235 - 244, 15.01.2021
https://doi.org/10.17714/gumusfenbil.770061

Abstract

Graphene oxide (GO) was synthesized by the modified Hummers method. The graphene oxide film deposited by using spray pyrolysis on metal-semiconductor interface of Al/GO/n-InP Schottky diode. The effect of GO film on Al/GO/n-InP Schottky diode characteristics was investigated. The structural properties of GO films were determined by X-Ray diffraction measurements (XRD) and scanning electron microscopy (SEM) measurements. The absorbance and transmittance spectra of the GO film were measured and their optical properties were investigated. From the I-V characteristics of the Al/GO/n-InP diode at room temperature, this structure was shown to have a rectifying property. In addition, it was determined that the diode had very good photovoltaic properties from the I-V measurements under dark and 100 mW/cm2 light intensity. The characteristic parameters of the Al/GO/n-InP Schottky diode such as the ideal factor (n), barrier height (Φb0), series resistance (Rs) and shunt resistance (Rsh) were calculated and compared with the reference Al/n-InP diode. The Al/GO/n-InP Schottky diode structure was found to be a suitable material for various electronic and optoelectronic circuit applications.

References

  • Alam, S. N., Sharma, N. and Kumar, L. (2017). Synthesis of graphene oxide (GO) by modified hummers method and ıts thermal reduction to obtain reduced graphene oxide (rGO), Graphene, 06(01), 1-18, https://doi:10.4236/graphene.2017.61001.
  • Aydoğan, Ş., Sağlam, M. and Türüt, A. (2008). Some electrical properties of polyaniline/p-Si/Al structure at 300K and 77K temperatures, Microelectronic Engineering, 85(2), 278-283, https://doi:10.1016/j.mee.2007.06.004.
  • Baltakesmez, A., Taşer, A., Kudaş, Z., Güzeldir, B., Ekinci, D. and Sağlam, M. (2019). Barrier height modification of n-InP using a silver nanoparticles loaded graphene oxide as an ınterlayer in a wide temperature range, Journal of Electronic Materials, 48(5), 3169-3182, https://doi:10.1007/s11664-019-07088-8.
  • Botas, C., Álvarez, P., Blanco, P., Granda, M., Blanco, C., Santamaría, R. and Menéndez, R. (2013). Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods, Carbon, 65, 156-164, https://doi:10.1016/j.carbon.2013.08.009.
  • Chen, C., Xu, K., Ji, X., Miao, L. and Jiang, J. (2014). Enhanced adsorption of acidic gases (CO2, NO2 and SO2) on light metal decorated graphene oxide, Physical Chemistry Chemical Physics, 16(22), 11031-11036,
  • Cheung, S. K., Cheung, N. W. and H., N. (1986). Extraction of Schottky diode parameters from forward current‐voltage characteristics, Applied Physics Letters, 49(2), 85-87, https://doi:10.1063/1.97359.
  • Cimilli Çatır, F. E. (2020). Fabrication and characterization of Au/n-type InP Schottky barrier diode with monolayer graphene interlayer, Semiconductor Science and Technology, 35(3), 035023, https://doi:10.1088/1361-6641/ab6bb4.
  • Cimilli Çatır, F. E. (2020). The structural, optical, and electrical characterization of Ti/n-InP Schottky diodes with graphene oxide ınterlayer deposited by spray pyrolysis method, Physica Status Solidi (a), 217(19), 2000125, https://doi:https://doi.org/10.1002/pssa.202000125.
  • Cimilli, F. E., Efeoğlu, H., Sağlam, M. and Türüt, A. (2008). Temperature-dependent current–voltage and capacitance–voltage characteristics of the Ag/n-InP/In Schottky diodes, Journal of Materials Science: Materials in Electronics, 20(2), 105-112, https://doi:10.1007/s10854-008-9635-z.
  • Cimilli, F. E., Sağlam, M. and Türüt, A. (2007). Determination of the lateral barrier height of inhomogeneous Au/n-type InP/In Schottky barrier diodes, Semiconductor Science and Technology, 22(8), 851-854, https://doi:10.1088/0268-1242/22/8/003.
  • Çakıcı, T., Sağlam, M. and Güzeldir, B. (2015). The comparison of electrical characteristics of Au/n-InP/In and Au/In2S3/n-InP/In junctions at room temperature, Materials Science and Engineering: B, 193, 61-69, https://doi:10.1016/j.mseb.2014.11.003.
  • Çiçek, O., Tan, S. O., Tecimer, H. and Altındal, Ş. (2018). Role of graphene-doped organic/polymer nanocomposites on the electronic properties of Schottky junction structures for photocell applications, Journal of Electronic Materials, 47(12), 7134-7142, https://doi:10.1007/s11664-018-6644-4.
  • Çiçek, O., Uslu Tecimer, H., Tan, S. O., Tecimer, H., Orak, İ. and Altındal, Ş. (2017). Synthesis and characterization of pure and graphene (Gr)-doped organic/polymer nanocomposites to investigate the electrical and photoconductivity properties of Au/n-GaAs structures, Composites Part B: Engineering, 113, 14-23, https://doi:10.1016/j.compositesb.2017.01.012.
  • Dimiev, A. M. and Eigler, S. (2016). Graphene oxide: fundamentals and applications United Kingdom: John Wiley & Sons.
  • Dimiev, A. M. and Tour, J. M. (2014). Mechanism of graphene oxide formation, ACS Nano, 8(3), 3060-3068,
  • Duman, S., Ozcelik, F. S., Gürbulak, B., Gülnahar, M. and Turut, A. (2015). Current-voltage and capacitance-conductance-voltage characteristics of Al/SiO2/p-Si and Al/methyl green (MG)/p-Si structures, Metallurgical and Materials Transactions A, 46(1), 347-353, https://doi:10.1007/s11661-014-2621-6.
  • Gullu, O., Cankaya, M. and Rajagopal Reddy, V. (2018). Barrier enhancement of Al/n-InP Schottky diodes by graphene oxide thin layer, Indian Journal of Physics, 93(4), 467-474, https://doi:10.1007/s12648-018-1311-4.
  • Hummers, W. S. and Offeman, R. E. (1958). Preparation of graphitic oxide, Journal of the American Chemical Society, 80(6), 1339-1339, https://doi:10.1021/ja01539a017.
  • Li, F., Jiang, X., Zhao, J. and Zhang, S. (2015). Graphene oxide: A promising nanomaterial for energy and environmental applications, Nano Energy, 16, 488-515,
  • Olumurewa, K. O., Olofinjana, B., Fasakin, O., Eleruja, M. A. and Ajayi, E. O. B. (2017). Characterization of high yield graphene oxide synthesized by simplified Hummers method, Graphene, 06(04), 85-98, https://doi:10.4236/graphene.2017.64007.
  • Park, S., and Ruoff, R. S. (2009). Chemical methods for the production of graphenes, Nature nanotechnology, 4(4), 217,
  • Perrozzi, F., Prezioso, S. and Ottaviano, L. (2014). Graphene oxide: from fundamentals to applications, Journal of Physics: Condensed Matter, 27(1), 013002, https://doi:10.1088/0953-8984/27/1/013002.
  • Phan, D. T., Gupta, R. K., Chung, G. S., Al-Ghamdi, A. A., Al-Hartomy, O. A., El-Tantawy, F. and Yakuphanoglu, F. (2012). Photodiodes based on graphene oxide–silicon junctions, Solar Energy, 86(10), 2961-2966, https://doi:https://doi.org/10.1016/j.solener.2012.07.002.
  • Reddy, P. R. S., Janardhanam, V., Jyothi, I., Yuk, S. H., Reddy, V. R., Jeong, J. C. and Choi, C. J. (2016). Modification of Schottky barrier properties of Ti/p-type InP Schottky diode by polyaniline (PANI) organic interlayer, JSTS:Journal of Semiconductor Technology and Science, 16(5), 664-674, https://doi:10.5573/jsts.2016.16.5.664.
  • Reddy, V. R., Reddy, Y. M., Padmasuvarna, R., ve Narasappa, T. L. (2015). Ru/Ti Schottky contacts on n-type In-P (100): temperature dependence of current-voltage (I-V) characteristics, Procedia Materials Science, 10, 666-672, https://doi:10.1016/j.mspro.2015.06.060.
  • Rhoderick, E. H. and Williams, R. H. (1988). Metal-semiconductor contact New York: Clarendon Press; Oxford University Press.
  • Sağlam, M., Ayyıldız, E., Gümüş, A., Türüt, A., Efeoğlu, H. and Tüzemen, S. (1996). Series resistance calculation for the Metal-Insulator-Semiconductor Schottky barrier diodes, Applied Physics A: Materials Science & Processing, 62(3), 269-273, https://doi:10.1007/s003390050297.
  • Sattler, K. D. (2016). Carbon Nanomaterials Sourcebook: Graphene, Fullerenes, Nanotubes, and Nanodiamonds New York: CRC Press.
  • Zhao, J., Liu, L. and Li, F. (2015). Graphene oxide: physics and applications Verlag Berlin Heidelberg: Springer.

Grafen oksitin modifiye Hummers yöntemi ile sentezi ve film olarak Al/GO/n-InP diyot performansına etkileri

Year 2021, Volume: 11 Issue: 1, 235 - 244, 15.01.2021
https://doi.org/10.17714/gumusfenbil.770061

Abstract

Grafen oksit (GO) modifiye Hummers yöntemi ile sentezlendi. Metal-yarıiletken arayüzeyine spray pyrolysis yöntemiyle büyütülen grafen oksit filmin Al/GO/n-InP Schottky diyot karakteristikleri üzerine etkisi araştırıldı. GO filmlerin yapısal özellikleri X-Işını kırınımı ölçümleri (XRD) ve taramalı elektron mikroskobu (SEM) ölçümleri ile belirlendi. GO filmin absorbans ve transmittans spektrumları alınarak optik özellikleri araştırıldı. Al/GO/n-InP diyotunun oda sıcaklığındaki I-V karakteristiklerinden bu yapının doğrultucu özellik gösterdiği görüldü. Ayrıca, karanlık ve 100 mW/cm2 ışık şiddeti altında yapılan I-V ölçümleri doğrultusunda diyotun oldukça iyi fotovoltaik özelliklere sahip olduğu belirlendi. Al/GO/n-InP Schottky diyotunun idealite faktörü (n) ,engel yüksekliği (Φb0), seri direnç (Rs) ve şönt direnci Rsh gibi karakteristik parametreleri hesaplanarak arayüzey tabakasız referans Al/n-InP diyotu ile karşılaştırıldı. Al/GO/n-InP Schottky diyot yapısının çeşitli elektronik ve optoelektronik devre uygulamaları için uygun bir malzeme olduğu görüldü.

References

  • Alam, S. N., Sharma, N. and Kumar, L. (2017). Synthesis of graphene oxide (GO) by modified hummers method and ıts thermal reduction to obtain reduced graphene oxide (rGO), Graphene, 06(01), 1-18, https://doi:10.4236/graphene.2017.61001.
  • Aydoğan, Ş., Sağlam, M. and Türüt, A. (2008). Some electrical properties of polyaniline/p-Si/Al structure at 300K and 77K temperatures, Microelectronic Engineering, 85(2), 278-283, https://doi:10.1016/j.mee.2007.06.004.
  • Baltakesmez, A., Taşer, A., Kudaş, Z., Güzeldir, B., Ekinci, D. and Sağlam, M. (2019). Barrier height modification of n-InP using a silver nanoparticles loaded graphene oxide as an ınterlayer in a wide temperature range, Journal of Electronic Materials, 48(5), 3169-3182, https://doi:10.1007/s11664-019-07088-8.
  • Botas, C., Álvarez, P., Blanco, P., Granda, M., Blanco, C., Santamaría, R. and Menéndez, R. (2013). Graphene materials with different structures prepared from the same graphite by the Hummers and Brodie methods, Carbon, 65, 156-164, https://doi:10.1016/j.carbon.2013.08.009.
  • Chen, C., Xu, K., Ji, X., Miao, L. and Jiang, J. (2014). Enhanced adsorption of acidic gases (CO2, NO2 and SO2) on light metal decorated graphene oxide, Physical Chemistry Chemical Physics, 16(22), 11031-11036,
  • Cheung, S. K., Cheung, N. W. and H., N. (1986). Extraction of Schottky diode parameters from forward current‐voltage characteristics, Applied Physics Letters, 49(2), 85-87, https://doi:10.1063/1.97359.
  • Cimilli Çatır, F. E. (2020). Fabrication and characterization of Au/n-type InP Schottky barrier diode with monolayer graphene interlayer, Semiconductor Science and Technology, 35(3), 035023, https://doi:10.1088/1361-6641/ab6bb4.
  • Cimilli Çatır, F. E. (2020). The structural, optical, and electrical characterization of Ti/n-InP Schottky diodes with graphene oxide ınterlayer deposited by spray pyrolysis method, Physica Status Solidi (a), 217(19), 2000125, https://doi:https://doi.org/10.1002/pssa.202000125.
  • Cimilli, F. E., Efeoğlu, H., Sağlam, M. and Türüt, A. (2008). Temperature-dependent current–voltage and capacitance–voltage characteristics of the Ag/n-InP/In Schottky diodes, Journal of Materials Science: Materials in Electronics, 20(2), 105-112, https://doi:10.1007/s10854-008-9635-z.
  • Cimilli, F. E., Sağlam, M. and Türüt, A. (2007). Determination of the lateral barrier height of inhomogeneous Au/n-type InP/In Schottky barrier diodes, Semiconductor Science and Technology, 22(8), 851-854, https://doi:10.1088/0268-1242/22/8/003.
  • Çakıcı, T., Sağlam, M. and Güzeldir, B. (2015). The comparison of electrical characteristics of Au/n-InP/In and Au/In2S3/n-InP/In junctions at room temperature, Materials Science and Engineering: B, 193, 61-69, https://doi:10.1016/j.mseb.2014.11.003.
  • Çiçek, O., Tan, S. O., Tecimer, H. and Altındal, Ş. (2018). Role of graphene-doped organic/polymer nanocomposites on the electronic properties of Schottky junction structures for photocell applications, Journal of Electronic Materials, 47(12), 7134-7142, https://doi:10.1007/s11664-018-6644-4.
  • Çiçek, O., Uslu Tecimer, H., Tan, S. O., Tecimer, H., Orak, İ. and Altındal, Ş. (2017). Synthesis and characterization of pure and graphene (Gr)-doped organic/polymer nanocomposites to investigate the electrical and photoconductivity properties of Au/n-GaAs structures, Composites Part B: Engineering, 113, 14-23, https://doi:10.1016/j.compositesb.2017.01.012.
  • Dimiev, A. M. and Eigler, S. (2016). Graphene oxide: fundamentals and applications United Kingdom: John Wiley & Sons.
  • Dimiev, A. M. and Tour, J. M. (2014). Mechanism of graphene oxide formation, ACS Nano, 8(3), 3060-3068,
  • Duman, S., Ozcelik, F. S., Gürbulak, B., Gülnahar, M. and Turut, A. (2015). Current-voltage and capacitance-conductance-voltage characteristics of Al/SiO2/p-Si and Al/methyl green (MG)/p-Si structures, Metallurgical and Materials Transactions A, 46(1), 347-353, https://doi:10.1007/s11661-014-2621-6.
  • Gullu, O., Cankaya, M. and Rajagopal Reddy, V. (2018). Barrier enhancement of Al/n-InP Schottky diodes by graphene oxide thin layer, Indian Journal of Physics, 93(4), 467-474, https://doi:10.1007/s12648-018-1311-4.
  • Hummers, W. S. and Offeman, R. E. (1958). Preparation of graphitic oxide, Journal of the American Chemical Society, 80(6), 1339-1339, https://doi:10.1021/ja01539a017.
  • Li, F., Jiang, X., Zhao, J. and Zhang, S. (2015). Graphene oxide: A promising nanomaterial for energy and environmental applications, Nano Energy, 16, 488-515,
  • Olumurewa, K. O., Olofinjana, B., Fasakin, O., Eleruja, M. A. and Ajayi, E. O. B. (2017). Characterization of high yield graphene oxide synthesized by simplified Hummers method, Graphene, 06(04), 85-98, https://doi:10.4236/graphene.2017.64007.
  • Park, S., and Ruoff, R. S. (2009). Chemical methods for the production of graphenes, Nature nanotechnology, 4(4), 217,
  • Perrozzi, F., Prezioso, S. and Ottaviano, L. (2014). Graphene oxide: from fundamentals to applications, Journal of Physics: Condensed Matter, 27(1), 013002, https://doi:10.1088/0953-8984/27/1/013002.
  • Phan, D. T., Gupta, R. K., Chung, G. S., Al-Ghamdi, A. A., Al-Hartomy, O. A., El-Tantawy, F. and Yakuphanoglu, F. (2012). Photodiodes based on graphene oxide–silicon junctions, Solar Energy, 86(10), 2961-2966, https://doi:https://doi.org/10.1016/j.solener.2012.07.002.
  • Reddy, P. R. S., Janardhanam, V., Jyothi, I., Yuk, S. H., Reddy, V. R., Jeong, J. C. and Choi, C. J. (2016). Modification of Schottky barrier properties of Ti/p-type InP Schottky diode by polyaniline (PANI) organic interlayer, JSTS:Journal of Semiconductor Technology and Science, 16(5), 664-674, https://doi:10.5573/jsts.2016.16.5.664.
  • Reddy, V. R., Reddy, Y. M., Padmasuvarna, R., ve Narasappa, T. L. (2015). Ru/Ti Schottky contacts on n-type In-P (100): temperature dependence of current-voltage (I-V) characteristics, Procedia Materials Science, 10, 666-672, https://doi:10.1016/j.mspro.2015.06.060.
  • Rhoderick, E. H. and Williams, R. H. (1988). Metal-semiconductor contact New York: Clarendon Press; Oxford University Press.
  • Sağlam, M., Ayyıldız, E., Gümüş, A., Türüt, A., Efeoğlu, H. and Tüzemen, S. (1996). Series resistance calculation for the Metal-Insulator-Semiconductor Schottky barrier diodes, Applied Physics A: Materials Science & Processing, 62(3), 269-273, https://doi:10.1007/s003390050297.
  • Sattler, K. D. (2016). Carbon Nanomaterials Sourcebook: Graphene, Fullerenes, Nanotubes, and Nanodiamonds New York: CRC Press.
  • Zhao, J., Liu, L. and Li, F. (2015). Graphene oxide: physics and applications Verlag Berlin Heidelberg: Springer.
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Fulya Esra Cimilli Çatır 0000-0002-0757-3130

Publication Date January 15, 2021
Submission Date July 15, 2020
Acceptance Date December 31, 2020
Published in Issue Year 2021 Volume: 11 Issue: 1

Cite

APA Cimilli Çatır, F. E. (2021). Grafen oksitin modifiye Hummers yöntemi ile sentezi ve film olarak Al/GO/n-InP diyot performansına etkileri. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(1), 235-244. https://doi.org/10.17714/gumusfenbil.770061