Research Article
BibTex RIS Cite

Mekanistik ampirik esnek üstyapı tasarım modellerinin tabaka kalınlık ve rijitlik oranlarına bağlı olarak karşılaştırılması

Year 2021, Volume: 11 Issue: 1, 91 - 102, 15.01.2021
https://doi.org/10.17714/gumusfenbil.773172

Abstract

Esnek üstyapıların tasarımında kullanılan mekanistik-ampirik yöntemlerde, trafik yükü ve çevresel etkiler altındaki kesitin mekanik tepkileri belirlenerek elde edilen bu değerler ampirik transfer denklemleri ile yol ömrü değerlerine dönüştürülmektedir. Farklı kuruluşlar tarafından önerilen ampirik modellerde dikkate alınan iki temel bozulma tipi yorulma ve tekerlek izidir. Bu iki bozulma tipine göre literatürde önerilen çok sayıda yol ömrü modeli bulunmakta ve bu modeller birbirlerinden önemli ölçüde farklı katsayılar içermektedir. Aynı kuruma ait yorulma ve tekerlek izi modelleri ile yapılan analizlerde dahi elde edilen yol ömrü değerleri birbirlerinden önemli ölçüde farklılık göstermektedir. Bu çalışmada seçilen geleneksel bir üstyapı kesiti için farklı ampirik modeller ile yol ömrü analizleri yapılmıştır. Yüzey ve temel tabakasının değişen rijitlik ve kalınlık oranlarına bağlı olarak transfer denklemleri birbirleri ile karşılaştırılmıştır. Elde edilen sonuçlar tüm kuruluşlar için tekerlek izi modelleri ile hesaplanan yol ömrü değerlerinin yorulma modelleri ile hesaplanan değerlerden fazla olduğunu göstermektedir. Temel tabakası rijitliğinin, yüzey tabakası rijitliğine kıyasla azalması durumunda farklı modellerden elde edilen sonuçlar birbirlerine yaklaşmaktadır. Yüzey tabakası kalınlığının temel tabakası kalınlığına kıyasla artması durumunda ise modellerin birbirlerinden önemli ölçüde farklı sonuçlar verdiği tespit edilmiştir.

References

  • Abd Alla, E. M., 2006. The rational use of finite element method in the analysis of flexible pavements. Journal of Engineering Sciences, 34(4), 1185–1211.
  • Adhikari, S., Shen, S. ve You, Z., 2009. Evaluation of fatigue models of hot-mix asphalt through laboratory testing. Transportation Research Record, 2127, 36–42. https://doi.org/10.3141/2127-05
  • Aguib, A. A., 2013. Flexible Pavement Design AASHTO 1993 versus Mechanistic-Empirical Pavement Design, Master of Science, The American University in Cairo, School of Sciences and Engineering. Cairo, 133p.
  • Ahmed, A. ve Erlingsson, S., 2016. Viscoelastic response modelling of a pavement under moving load. Transportation Research Procedia, 14, 748–757. http://dx.doi.org/10.1016/j.trpro.2016.05.343
  • Behiry, A. E. A. E. M., 2012. Fatigue and rutting lives in flexible pavement. Ain Shams Engineering Journal, 3(4), 367–374. http://dx.doi.org/10.1016/j.asej.2012.04.008
  • Carvalho, R. L., Schwartz, C. W., 2006. Comparisons of flexible pavement designs: AASHTO empirical versus NCHRP project 1-37A mechanistic-empirical. Transportation Research Record, 1947, 167–174.
  • Chegenizadeh, A., Keramatikerman, M. ve Nikraz, H., 2016. Flexible pavement modelling using Kenlayer. Electronic Journal of Geotechnical Engineering, 21(7), 2467–2479.
  • Chen, Y., 2009. Viscoelastic Modeling of Flexible Pavement, Doctor of Philosophy, The Graduate Faculty of The University of Akron. Ohio, 255p.
  • Ekwulo, E. O. ve Eme, D. B., 2009. Fatigue and rutting strain analysis of flexible pavements designed using CBR methods. African Journal of Environmental Science and Technology, 3(12), 412–421. https://doi.org/10.1080/14680629.2007.9690094
  • Ekwulo, E. O. ve Eme, D. B., 2013. Expected traffic, pavement thickness, fatigue and rutting strain relationship for low volume asphalt pavement. The International Journal of Engineering And Science (IJES), 2(8), 62–77.
  • Ghanizadeh, A. R. ve Ziaie, A., 2015. NonPAS : A program for nonlinear analysis of flexible pavements. International Journal of Integrated Engineering, 7(1), 21–28.
  • Hadi, M. N. S. ve Bodhinayake, B. C., 2003. Non-linear finite element analysis of flexible pavements. Advances in Engineering Software, 34(11–12), 657–662.
  • Hafeez, I., Shan, A., Ali, A. ve Ahmed, I., 2017. Flexible Pavement Design Evaluation Using Mechanistic-Empirical Approaches. Technical Journal, University of Engineering and Technology 22(2), 27–33.
  • Huang, Y. H., 2004. Pavement Analysis and Design (2nd ed.): New Jersey, Pearson Prentice Hall, 775 p.
  • Lu, M. P. C. P., Bratlien, A. ve Tolliver, D., 2014. Understanding Mechanistic-Empirical Pavement Design Guide (MEPDG ) for North Dakota Implementation: Upper Great Plains Transportation Institute North Dakota State University, Fargo.
  • Mashayekhi, M., Amini, A. A., Behbahani, H. ve Nobakht, S., 2011. Comparison of mechanistic-empirical and empirical flexible pavement design procedures of AASHTO: A Case study, 5th International Conference Bituminous Mixtures and Pavements, June 2011, Thessaloniki, Greece, p.319–328.
  • Mokhtari, A. ve Nejad, F., 2012. Mechanistic approach for fiber and polymer modified SMA mixtures. Construction and Building Materials, 36, 381–390.
  • Mousa, M. R., Abo-Hashema, M. A., Gadallah, A. A. ve Mousa, R. M., 2015. Evaluation of pavement performance prediction models under different traffic and climatic conditions, 14th International Conference on Asphalt, Pavement Engineering, and Infrastructure, p.1–19.
  • Muniandy, R., Eltaher, A. ve Thamer, N., 2013. Comparison of flexible pavement performance using Kenlayer and Chev PC software program. Australian Journal of Basic and Applied Sciences, 7(9), 112–119.
  • Sağlık, A. ve Güngör, A. G., 2008. Esnek Üstyapılar Projelendirme Rehberi: Ankara, Karayolları Genel Müdürlüğü, 148 p (in Turkish).
  • Sarkar, A., 2016. Numerical comparison of flexible pavement dynamic response under different axles. International Journal of Pavement Engineering, 17(5), 377–387. http://dx.doi.org/10.1080/10298436.2014.993195
  • Tunç, A., 2004. Kaplama Mühendisliği ve Uygulamaları: Ankara, Asil Yayın Dağıtım, 549 p (in Turkish).
  • Tunç, A., 2007. Yol Malzemeleri ve Uygulamaları (2.Baskı): Ankara, Nobel Yayınevi, 840 p (in Turkish).
  • Yoo, P. J., Al-Qadi, I. L., Elseifi, M. A. ve Janajreh, I., 2006. Flexible pavement responses to different loading amplitudes considering layer interface condition and lateral shear forces. International Journal of Pavement Engineering, 7(1), 73–86. https://doi.org/10.1080/10298430500516074
  • Ziari, H. ve Khabiri, M. M., 2007. Interface condition influence on prediction of flexible pavement life. Journal of Civil Engineering and Management, 13(1), 71–76. https://doi.org/10.1080/13923730.2007.9636421

Comparison of mechanistic empirical flexible pavement design models based on layer thickness and stiffness ratios

Year 2021, Volume: 11 Issue: 1, 91 - 102, 15.01.2021
https://doi.org/10.17714/gumusfenbil.773172

Abstract

In mechanistic-empirical methods used in the design of flexible pavements, the mechanical responses of the cross-section under traffic load and environmental influences are determined and these values are converted into pavement life values with empirical transfer equations. The two main types of distress considered in empirical models recommended by different organizations are fatigue and rutting. According to these two distress types, there are many pavement life models proposed in the literature and these models contain significantly different coefficients. Even in the analyzes made with the same institution's fatigue and rutting models, the pavement life values differ significantly from each other. In this study, pavement life analyzes were performed with different empirical models for a traditional pavement cross-section. Transfer equations are compared with each other depending on the changing stiffness and thickness ratios of the surface and base layer. The results obtained show that the pavement life values calculated with rutting models for all organizations are higher than the values calculated with fatigue models. If the base layer stiffness decreases compared to the surface layer stiffness, the results obtained from different models converge. In case the surface layer thickness increases compared to the base layer thickness, it is determined that the models give significantly different results from each other.

References

  • Abd Alla, E. M., 2006. The rational use of finite element method in the analysis of flexible pavements. Journal of Engineering Sciences, 34(4), 1185–1211.
  • Adhikari, S., Shen, S. ve You, Z., 2009. Evaluation of fatigue models of hot-mix asphalt through laboratory testing. Transportation Research Record, 2127, 36–42. https://doi.org/10.3141/2127-05
  • Aguib, A. A., 2013. Flexible Pavement Design AASHTO 1993 versus Mechanistic-Empirical Pavement Design, Master of Science, The American University in Cairo, School of Sciences and Engineering. Cairo, 133p.
  • Ahmed, A. ve Erlingsson, S., 2016. Viscoelastic response modelling of a pavement under moving load. Transportation Research Procedia, 14, 748–757. http://dx.doi.org/10.1016/j.trpro.2016.05.343
  • Behiry, A. E. A. E. M., 2012. Fatigue and rutting lives in flexible pavement. Ain Shams Engineering Journal, 3(4), 367–374. http://dx.doi.org/10.1016/j.asej.2012.04.008
  • Carvalho, R. L., Schwartz, C. W., 2006. Comparisons of flexible pavement designs: AASHTO empirical versus NCHRP project 1-37A mechanistic-empirical. Transportation Research Record, 1947, 167–174.
  • Chegenizadeh, A., Keramatikerman, M. ve Nikraz, H., 2016. Flexible pavement modelling using Kenlayer. Electronic Journal of Geotechnical Engineering, 21(7), 2467–2479.
  • Chen, Y., 2009. Viscoelastic Modeling of Flexible Pavement, Doctor of Philosophy, The Graduate Faculty of The University of Akron. Ohio, 255p.
  • Ekwulo, E. O. ve Eme, D. B., 2009. Fatigue and rutting strain analysis of flexible pavements designed using CBR methods. African Journal of Environmental Science and Technology, 3(12), 412–421. https://doi.org/10.1080/14680629.2007.9690094
  • Ekwulo, E. O. ve Eme, D. B., 2013. Expected traffic, pavement thickness, fatigue and rutting strain relationship for low volume asphalt pavement. The International Journal of Engineering And Science (IJES), 2(8), 62–77.
  • Ghanizadeh, A. R. ve Ziaie, A., 2015. NonPAS : A program for nonlinear analysis of flexible pavements. International Journal of Integrated Engineering, 7(1), 21–28.
  • Hadi, M. N. S. ve Bodhinayake, B. C., 2003. Non-linear finite element analysis of flexible pavements. Advances in Engineering Software, 34(11–12), 657–662.
  • Hafeez, I., Shan, A., Ali, A. ve Ahmed, I., 2017. Flexible Pavement Design Evaluation Using Mechanistic-Empirical Approaches. Technical Journal, University of Engineering and Technology 22(2), 27–33.
  • Huang, Y. H., 2004. Pavement Analysis and Design (2nd ed.): New Jersey, Pearson Prentice Hall, 775 p.
  • Lu, M. P. C. P., Bratlien, A. ve Tolliver, D., 2014. Understanding Mechanistic-Empirical Pavement Design Guide (MEPDG ) for North Dakota Implementation: Upper Great Plains Transportation Institute North Dakota State University, Fargo.
  • Mashayekhi, M., Amini, A. A., Behbahani, H. ve Nobakht, S., 2011. Comparison of mechanistic-empirical and empirical flexible pavement design procedures of AASHTO: A Case study, 5th International Conference Bituminous Mixtures and Pavements, June 2011, Thessaloniki, Greece, p.319–328.
  • Mokhtari, A. ve Nejad, F., 2012. Mechanistic approach for fiber and polymer modified SMA mixtures. Construction and Building Materials, 36, 381–390.
  • Mousa, M. R., Abo-Hashema, M. A., Gadallah, A. A. ve Mousa, R. M., 2015. Evaluation of pavement performance prediction models under different traffic and climatic conditions, 14th International Conference on Asphalt, Pavement Engineering, and Infrastructure, p.1–19.
  • Muniandy, R., Eltaher, A. ve Thamer, N., 2013. Comparison of flexible pavement performance using Kenlayer and Chev PC software program. Australian Journal of Basic and Applied Sciences, 7(9), 112–119.
  • Sağlık, A. ve Güngör, A. G., 2008. Esnek Üstyapılar Projelendirme Rehberi: Ankara, Karayolları Genel Müdürlüğü, 148 p (in Turkish).
  • Sarkar, A., 2016. Numerical comparison of flexible pavement dynamic response under different axles. International Journal of Pavement Engineering, 17(5), 377–387. http://dx.doi.org/10.1080/10298436.2014.993195
  • Tunç, A., 2004. Kaplama Mühendisliği ve Uygulamaları: Ankara, Asil Yayın Dağıtım, 549 p (in Turkish).
  • Tunç, A., 2007. Yol Malzemeleri ve Uygulamaları (2.Baskı): Ankara, Nobel Yayınevi, 840 p (in Turkish).
  • Yoo, P. J., Al-Qadi, I. L., Elseifi, M. A. ve Janajreh, I., 2006. Flexible pavement responses to different loading amplitudes considering layer interface condition and lateral shear forces. International Journal of Pavement Engineering, 7(1), 73–86. https://doi.org/10.1080/10298430500516074
  • Ziari, H. ve Khabiri, M. M., 2007. Interface condition influence on prediction of flexible pavement life. Journal of Civil Engineering and Management, 13(1), 71–76. https://doi.org/10.1080/13923730.2007.9636421
There are 25 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Murat Bostancıoğlu 0000-0001-6820-2213

Publication Date January 15, 2021
Submission Date July 24, 2020
Acceptance Date November 22, 2020
Published in Issue Year 2021 Volume: 11 Issue: 1

Cite

APA Bostancıoğlu, M. (2021). Mekanistik ampirik esnek üstyapı tasarım modellerinin tabaka kalınlık ve rijitlik oranlarına bağlı olarak karşılaştırılması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(1), 91-102. https://doi.org/10.17714/gumusfenbil.773172