Research Article
BibTex RIS Cite

Anionic dye biosorption of potential of chitosan-sugar beet pulp biocomposite sorbent system

Year 2021, Volume: 11 Issue: 2, 325 - 338, 15.04.2021
https://doi.org/10.17714/gumusfenbil.732646

Abstract

In this study, sugar beet pulp industrial waste was immobilized with chitosan and the obtained biocomposite material was used to remove Acid Red 1 and Reactive Red 2 dyes from aqueous solutions. Decolorization potential of biocomposite sorbent was examined as a function of initial solution pH, sorbent amount, initial dye concentration, time, and ionic strength. The dye removal efficiency of biocomposite at optimum biosorption conditions (pH: 3.0, biocomposite amount: 0.01 g, time:10 min) was recorded as 81.23% for Acid Red 1 and 86,79% for Reactive Red 2. Decolorization dynamics of biocomposite system were investigated isotherm and kinetic modeling. The biosorption process is well described by the pseudo-first-order kinetic model and the Langmuir isotherm model. The maximum biosorption capacity of biocomposite was calculated as 358.027 mg g-1 for Acid Red 1 and 379.228 mg g-1 for Reactive Red 2. Possible dye-biocomposite interactions were characterized by zeta potential, IR, and SEM analysis. The results showed that the suggested biocomposite sorbent can be an effective alternative biomaterial for the removal of anionic dye from aqueous media with a high color removal capacity.

References

  • Akar, T. and Divriklioglu, M. (2010). Biosorption applications of modified fungal biomass for decolorization of Reactive Red 2 contaminated solutions: Batch and dynamic flow mode studies. Bioresource Technology, 101(19), 7271-7277. https://doi.org/10.1016/j.biortech.2010.04.044.
  • Akar, T., Arslan, S. and Akar, S. T. (2013). Utilization of Thamnidium elegans fungal culture in environmental cleanup: a reactive dye biosorption study. Ecological Engineering, 58, 363-370. https://doi.org/10.1016/j.ecoleng.2013.06.026.
  • Akkaya, G. and Özer, A. (2005). Biosorption of Acid Red 274 (AR 274) on Dicranella varia: Determination of equilibrium and kinetic model parameters. Process Biochemistry, 40(11), 3559-3568. https://doi.org/10.1016/j.procbio.2005.03.048.
  • Aksu, Z. and İşoğlu, İ. A. (2005). Removal of copper (II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp. Process Biochemistry, 40(9), 3031-3044. https://doi.org/10.1016/j.procbio.2005.02.004.
  • Altundogan, H. S., Arslan, N. E. and Tumen, F. (2007). Copper removal from aqueous solutions by sugar beet pulp treated by NaOH and citric acid. Journal of Hazardous Materials, 149(2), 432-439. https://doi.org/10.1016/j.jhazmat.2007.04.008.
  • An, T., Zhou, L., Li, G., Fu, J. and Sheng, G. (2008). Recent patents on immobilized microorganism technology and its engineering application in wastewater treatment. Recent Patents on Engineering, 2(1), 28-35. https://doi.org/10.2174/187221208783478543.
  • Arslanoğlu, H. ve Tümen, F . (2015). Sitrik asitle modifiye edilmiş şeker pancarı küspesi ile sulu çözeltilerden Pb(II) ve Cd(II) giderilmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 27(1) , 85-99 . https://dergipark.org.tr/en/pub/fumbd/issue/29253/313185
  • Barka, N., Abdennouri, M. and Makhfouk, M. E. (2011). Removal of methylene blue and eriochrome black T from aqueous solutions by biosorption on Scolymus hispanicus L.: Kinetics, equilibrium and thermodynamics. Journal of the Taiwan Institute of Chemical Engineers, 42(2), 320-326. https://doi.org/10.1016/j.jtice.2010.07.004.
  • Bouras, H. D., Yeddou, A. R., Bouras, N., Hellel, D., Holtz, M. D., Sabaou, N., Chergui, A. and Nadjemi, B. (2017). Biosorption of Congo red dye by Aspergillus carbonarius M333 and Penicillium glabrum Pg1: Kinetics, equilibrium and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers, 80, 915-923. https://doi.org/10.1016/j.jtice.2017.08.002.
  • Castro, L., Blázquez, M. L., González, F., Muñoz, J. A. and Ballester, A. (2017). Biosorption of Zn (II) from industrial effluents using sugar beet pulp and F. vesiculosus: From laboratory tests to a pilot approach. Science of the Total Environment, 598, 856-866. https://doi.org/10.1016/j.scitotenv.2017.04.138.
  • Crini, G. and Badot, P. M. (2008). Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Progress in Polymer Science, 33(4), 399-447. https://doi.org/10.1016/j.progpolymsci.2007.11.001.
  • De-Bashan, L. E. and Bashan, Y. (2010). Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource Technology, 101(6), 1611-1627. https://doi.org/10.1016/j.biortech.2009.09.043.
  • Demiral, H. and Gündüzoğlu, G. (2010). Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse. Bioresource Technology, 101(6), 1675-1680. https://doi.org/10.1016/j.biortech.2009.09.087.
  • Dronnet, V. M., Renard, C. M. G. C., Axelos, M. A. V. and Thibault, J. F. (1997). Binding of divalent metal cations by sugar-beet pulp. Carbohydrate Polymers, 34(1-2), 73-82. https://doi.org/10.1016/S0144-8617(97)00055-6.
  • Dubinin, M. M. and Radushkevich, L. V. (1947). Evaluation of microporous materials with a new isotherm. In Dokl. Akad. Nauk. SSSR, 55, 331-334.
  • Eddya, M., Tbib, B. and Khalil, E. H. (2020). A comparison of chitosan properties after extraction from shrimp shells by diluted and concentrated acids. Heliyon, 6(2), e03486. https://doi.org/10.1016/j.heliyon.2020.e03486.
  • Freundlich, H. (1907). Über die adsorption in lösungen. Zeitschrift für physikalische Chemie, 57(1), 385-470.
  • Girijan, S. and Kumar, M. (2019). Immobilized biomass systems: an approach for trace organics removal from wastewater and environmental remediation. Current Opinion in Environmental Science & Health, 12, 18-29. https://doi.org/10.1016/j.coesh.2019.08.005.
  • Goertzen, S. L., Thériault, K. D., Oickle, A. M., Tarasuk, A. C. and Andreas, H. A. (2010). Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon, 48(4), 1252-1261. https://doi.org/10.1016/j.carbon.2009.11.050.
  • Ho, Y. S. and McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5.
  • Huang, Z., Li, Y., Chen, W., Shi, J., Zhang, N., Wang, X., Li, Z., Gao, L. and Zhang, Y. (2017). Modified bentonite adsorption of organic pollutants of dye wastewater. Materials Chemistry and Physics, 202, 266-276. https://doi.org/10.1016/j.matchemphys.2017.09.028.
  • Khan, M. M. R., Sahoo, B., Mukherjee, A. K. and Naskar, A. (2019). Biosorption of acid yellow-99 using mango (Mangifera indica) leaf powder, an economic agricultural waste. SN Applied Sciences, 1(11), 1-15. https ://doi.org/10.1007/s4245 2-019-1537-6.
  • Kumari, K. and Abraham, T. E. (2007). Biosorption of anionic textile dyes by nonviable biomass of fungi and yeast. Bioresource Technology, 98(9), 1704-1710. https://doi.org/10.1016/j.biortech.2006.07.030.
  • Lagergren, S. (1898). Zur theorie der sogenannten adsorption geloster stoffe. Kungliga svenska vetenskapsakademiens. Handlingar, 24, 1-39.
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361-1403.
  • Nawaz, S., Bhatti, H. N., Bokhari, T. H. and Sadaf, S. (2014). Removal of Novacron Golden Yellow dye from aqueous solutions by low-cost agricultural waste: Batch and fixed bed study. Chemistry and Ecology, 30(1), 52-65. https://doi.org/10.1080/02757540.2013.841898.
  • Ngah, W. W., Ab Ghani, S. and Kamari, A. (2005). Adsorption behaviour of Fe (II) and Fe (III) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresource Technology, 96(4), 443-450. https://doi.org/10.1016/j.biortech.2004.05.022.
  • Özer, A., Tanyildizi, M. S. and Tümen, F. (1998). Study of cadmium adsorption from aqueous solution on activated carbon from sugar beet pulp. Environmental Technology, 19(11), 1119-1125. https://doi.org/10.1080/09593331908616770.
  • Öztürk, M , Yıldız, S. ve Aslan, Ş . (2020). Nikel (II) iyonlarinin atık çay’a biyosorpsiyonu: denge, kinetik ve termodinamik çalımaları. Mühendislik Bilimleri ve Tasarım Dergisi, 8(4), 985-998. https://doi.org/10.21923/jesd.742918.
  • Pehlivan, E., Cetin, S. and Yanık, B. H. (2006). Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash. Journal Of Hazardous Materials, 135(1-3), 193-199. https://doi.org/10.1016/j.jhazmat.2005.11.049.
  • Rangabhashiyam, S., Anu, N. and Selvaraju, N. (2013). Sequestration of dye from textile industry wastewater using agricultural waste products as adsorbents. Journal of Environmental Chemical Engineering, 1(4), 629-641. https://doi.org/10.1016/j.jece.2013.07.014.
  • Safa, Y. and Bhatti, H. N. (2011). Adsorptive removal of direct textile dyes by low cost agricultural waste: Application of factorial design analysis. Chemical Engineering Journal, 167(1), 35-41. https://doi.org/10.1016/j.cej.2010.11.103.
  • Sirajudheen, P., Nikitha, M. R., Karthikeyan, P. and Meenakshi, S. (2020). Perceptive removal of toxic azo dyes from water using magnetic Fe3O4 reinforced graphene oxide–carboxymethyl cellulose recyclable composite: Adsorption investigation of parametric studies and their mechanisms. Surfaces and Interfaces, 21, 100648. https://doi.org/10.1016/j.surfin.2020.100648.
  • Subramani, S. E. and Thinakaran, N. (2017). Isotherm, kinetic and thermodynamic studies on the adsorption behaviour of textile dyes onto chitosan. Process Safety and Environmental Protection, 106, 1-10. https://doi.org/10.1016/j.psep.2016.11.024.
  • Şenol, Z. M., Gürsoy, N., Şimşek, S., Özer, A. and Karakuş, N. (2020). Removal of food dyes from aqueous solution by chitosan-vermiculite beads. International Journal Of Biological Macromolecules, 148, 635-646. https://doi.org/10.1016/j.ijbiomac.2020.01.166.
  • Thiyagarajan, E., Saravanan, P., Saranya, P., Gandhi, N. N. and Renganathan, S. (2017). Biosorption of reactive red 2 using positively charged Metapenaeus monoceros shells. Journal of Saudi Chemical Society, 21, S1-S6. https://doi.org/10.1016/j.jscs.2013.05.004.
  • Tunalı Akar, S., Yilmazer, D., Celik, S., Balk, Y. Y. and Akar, T. (2013). On the utilization of a lignocellulosic waste as an excellent dye remover: Modification, characterization and mechanism analysis. Chemical Engineering Journal, 229, 257-266. https://doi.org/10.1016/j.cej.2013.06.009.
  • Tunalı Akar, S., Yilmazer, D., Celik, S., Balk, Y. Y. and Akar, T. (2015). Effective biodecolorization potential of surface modified lignocellulosic industrial waste biomass. Chemical Engineering Journal, 259, 286-292. https://doi.org/10.1016/j.cej.2014.07.112.
  • Tunalı Akar, S., San, E. and Akar, T. (2016). Chitosan–alunite composite: an effective dye remover with high sorption, regeneration and application potential. Carbohydrate Polymers, 143, 318-326. https://doi.org/10.1016/j.carbpol.2016.01.066.
  • ud Din, M., Bhatti, H. N., Yasir, M. and Ashraf, A. (2016). Direct dye biosorption by immobilized barley husk. Desalination and Water Treatment, 57(20), 9263-9271. https://doi.org/10.1080/19443994.2015.1027962.
  • Vakili, M., Rafatullah, M., Salamatinia, B., Abdullah, A. Z., Ibrahim, M. H., Tan, K. B., Gholami, Z. and Amouzgar, P. (2014). Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohydrate Polymers, 113, 115-130. https://doi.org/10.1016/j.carbpol.2014.07.007.
  • Vučurović, V. M., Razmovski, R. N. and Tekić, M. N. (2012). Methylene blue (cationic dye) adsorption onto sugar beet pulp: equilibrium isotherm and kinetic studies. Journal of the Taiwan Institute of Chemical Engineers, 43(1), 108-111. https://doi.org/10.1016/j.jtice.2011.06.008.
  • Wang, T., Zhao, P., Lu, N., Chen, H., Zhang, C. and Hou, X. (2016). Facile fabrication of Fe3O4/MIL-101 (Cr) for effective removal of acid red 1 and orange G from aqueous solution. Chemical Engineering Journal, 295, 403-413. https://doi.org/10.1016/j.cej.2016.03.016.
  • Wase, D. A. J. and Forster, C. F. (Eds.). (1997). Biosorbents for Metal Ions. UK: CRC Press.
  • Yang, Y., Wang, G., Wang, B., Li, Z., Jia, X., Zhou, Q. and Zhao, Y. (2011). Biosorption of Acid Black 172 and Congo Red from aqueous solution by nonviable Penicillium YW 01: Kinetic study, equilibrium isotherm and artificial neural network modeling. Bioresource Technology, 102(2), 828-834. https://doi.org/10.1016/j.biortech.2010.08.125.
  • Zeng, L., Chen, Y., Zhang, Q., Guo, X., Peng, Y., Xiao, H., Chen, X. and Luo, J. (2015). Adsorption of Cd (II), Cu (II) and Ni (II) ions by cross-linking chitosan/rectorite nano-hybrid composite microspheres. Carbohydrate Polymers, 130, 333-343. https://doi.org/10.1016/j.carbpol.2015.05.015.
  • Zhou, Y., Lu, J., Zhou, Y. and Liu, Y. (2019). Recent advances for dyes removal using novel adsorbents: a review. Environmental Pollution, 252, 352-365. https://doi.org/10.1016/j.envpol.2019.05.072.

Kitosan-şeker pancarı posası biyokompozit sorban sisteminin anyonik boyarmadde biyosorpsiyon potansiyeli

Year 2021, Volume: 11 Issue: 2, 325 - 338, 15.04.2021
https://doi.org/10.17714/gumusfenbil.732646

Abstract

Bu çalışmada endüstriyel bir atık olan şeker pancarı posası kitosan ile immobilize edilmiş ve elde edilen biyokompozit materyal sulu çözeltilerden Asit Kırmızısı 1 ve Reaktif Kırmızısı 2 boyarmaddelerinin giderimi için kullanılmıştır. Biyokompozit sorbanın renk giderim performansı, başlangıç çözelti pH’sı, sorban miktarı, başlangıç boyarmadde derişimi, denge süresi ve iyonik şiddetin bir fonksiyonu olarak incelenmiştir. Optimum biyosorpsiyon koşullarında (pH: 3.0, biyokompozit sorban miktarı: 0.01 g, denge süresi:10 dk) biyokompozitin boyarmadde giderim verimleri AK1 için %81.23, RK2 için ise %86.79 olarak kaydedilmiştir. Biyokompozit sistemin renk giderim dinamikleri kinetik ve izoterm modellemeleriyle incelenmiştir. Biyosorpsiyon prosesi en iyi yalancı birinci derece kinetik modeli ve Langmuir izoterm modeli ile tanımlanmıştır. Biyokompozitin maksimum tek tabakalı biyosorpsiyon kapasitesi Asit Kırmızısı 1 için 358.027 mg g-1, Reaktif Kırmızısı 2 için ise 379.228 mg g-1, olarak hesaplanmıştır. Boyarmadde-biyokompozit sorban olası etkileşimleri zeta potansiyeli, IR ve SEM analizleriyle karakterize edilmiştir. Sonuçlar, geliştirilen biyokompozit sorbanın oldukça yüksek renk giderim kapasitesi ile sulu ortamdan anyonik boyarmadde uzaklaştırılması için etkili bir alternatif olabileceğini göstermiştir.

References

  • Akar, T. and Divriklioglu, M. (2010). Biosorption applications of modified fungal biomass for decolorization of Reactive Red 2 contaminated solutions: Batch and dynamic flow mode studies. Bioresource Technology, 101(19), 7271-7277. https://doi.org/10.1016/j.biortech.2010.04.044.
  • Akar, T., Arslan, S. and Akar, S. T. (2013). Utilization of Thamnidium elegans fungal culture in environmental cleanup: a reactive dye biosorption study. Ecological Engineering, 58, 363-370. https://doi.org/10.1016/j.ecoleng.2013.06.026.
  • Akkaya, G. and Özer, A. (2005). Biosorption of Acid Red 274 (AR 274) on Dicranella varia: Determination of equilibrium and kinetic model parameters. Process Biochemistry, 40(11), 3559-3568. https://doi.org/10.1016/j.procbio.2005.03.048.
  • Aksu, Z. and İşoğlu, İ. A. (2005). Removal of copper (II) ions from aqueous solution by biosorption onto agricultural waste sugar beet pulp. Process Biochemistry, 40(9), 3031-3044. https://doi.org/10.1016/j.procbio.2005.02.004.
  • Altundogan, H. S., Arslan, N. E. and Tumen, F. (2007). Copper removal from aqueous solutions by sugar beet pulp treated by NaOH and citric acid. Journal of Hazardous Materials, 149(2), 432-439. https://doi.org/10.1016/j.jhazmat.2007.04.008.
  • An, T., Zhou, L., Li, G., Fu, J. and Sheng, G. (2008). Recent patents on immobilized microorganism technology and its engineering application in wastewater treatment. Recent Patents on Engineering, 2(1), 28-35. https://doi.org/10.2174/187221208783478543.
  • Arslanoğlu, H. ve Tümen, F . (2015). Sitrik asitle modifiye edilmiş şeker pancarı küspesi ile sulu çözeltilerden Pb(II) ve Cd(II) giderilmesi. Fırat Üniversitesi Mühendislik Bilimleri Dergisi, 27(1) , 85-99 . https://dergipark.org.tr/en/pub/fumbd/issue/29253/313185
  • Barka, N., Abdennouri, M. and Makhfouk, M. E. (2011). Removal of methylene blue and eriochrome black T from aqueous solutions by biosorption on Scolymus hispanicus L.: Kinetics, equilibrium and thermodynamics. Journal of the Taiwan Institute of Chemical Engineers, 42(2), 320-326. https://doi.org/10.1016/j.jtice.2010.07.004.
  • Bouras, H. D., Yeddou, A. R., Bouras, N., Hellel, D., Holtz, M. D., Sabaou, N., Chergui, A. and Nadjemi, B. (2017). Biosorption of Congo red dye by Aspergillus carbonarius M333 and Penicillium glabrum Pg1: Kinetics, equilibrium and thermodynamic studies. Journal of the Taiwan Institute of Chemical Engineers, 80, 915-923. https://doi.org/10.1016/j.jtice.2017.08.002.
  • Castro, L., Blázquez, M. L., González, F., Muñoz, J. A. and Ballester, A. (2017). Biosorption of Zn (II) from industrial effluents using sugar beet pulp and F. vesiculosus: From laboratory tests to a pilot approach. Science of the Total Environment, 598, 856-866. https://doi.org/10.1016/j.scitotenv.2017.04.138.
  • Crini, G. and Badot, P. M. (2008). Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Progress in Polymer Science, 33(4), 399-447. https://doi.org/10.1016/j.progpolymsci.2007.11.001.
  • De-Bashan, L. E. and Bashan, Y. (2010). Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource Technology, 101(6), 1611-1627. https://doi.org/10.1016/j.biortech.2009.09.043.
  • Demiral, H. and Gündüzoğlu, G. (2010). Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse. Bioresource Technology, 101(6), 1675-1680. https://doi.org/10.1016/j.biortech.2009.09.087.
  • Dronnet, V. M., Renard, C. M. G. C., Axelos, M. A. V. and Thibault, J. F. (1997). Binding of divalent metal cations by sugar-beet pulp. Carbohydrate Polymers, 34(1-2), 73-82. https://doi.org/10.1016/S0144-8617(97)00055-6.
  • Dubinin, M. M. and Radushkevich, L. V. (1947). Evaluation of microporous materials with a new isotherm. In Dokl. Akad. Nauk. SSSR, 55, 331-334.
  • Eddya, M., Tbib, B. and Khalil, E. H. (2020). A comparison of chitosan properties after extraction from shrimp shells by diluted and concentrated acids. Heliyon, 6(2), e03486. https://doi.org/10.1016/j.heliyon.2020.e03486.
  • Freundlich, H. (1907). Über die adsorption in lösungen. Zeitschrift für physikalische Chemie, 57(1), 385-470.
  • Girijan, S. and Kumar, M. (2019). Immobilized biomass systems: an approach for trace organics removal from wastewater and environmental remediation. Current Opinion in Environmental Science & Health, 12, 18-29. https://doi.org/10.1016/j.coesh.2019.08.005.
  • Goertzen, S. L., Thériault, K. D., Oickle, A. M., Tarasuk, A. C. and Andreas, H. A. (2010). Standardization of the Boehm titration. Part I. CO2 expulsion and endpoint determination. Carbon, 48(4), 1252-1261. https://doi.org/10.1016/j.carbon.2009.11.050.
  • Ho, Y. S. and McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451-465. https://doi.org/10.1016/S0032-9592(98)00112-5.
  • Huang, Z., Li, Y., Chen, W., Shi, J., Zhang, N., Wang, X., Li, Z., Gao, L. and Zhang, Y. (2017). Modified bentonite adsorption of organic pollutants of dye wastewater. Materials Chemistry and Physics, 202, 266-276. https://doi.org/10.1016/j.matchemphys.2017.09.028.
  • Khan, M. M. R., Sahoo, B., Mukherjee, A. K. and Naskar, A. (2019). Biosorption of acid yellow-99 using mango (Mangifera indica) leaf powder, an economic agricultural waste. SN Applied Sciences, 1(11), 1-15. https ://doi.org/10.1007/s4245 2-019-1537-6.
  • Kumari, K. and Abraham, T. E. (2007). Biosorption of anionic textile dyes by nonviable biomass of fungi and yeast. Bioresource Technology, 98(9), 1704-1710. https://doi.org/10.1016/j.biortech.2006.07.030.
  • Lagergren, S. (1898). Zur theorie der sogenannten adsorption geloster stoffe. Kungliga svenska vetenskapsakademiens. Handlingar, 24, 1-39.
  • Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 40(9), 1361-1403.
  • Nawaz, S., Bhatti, H. N., Bokhari, T. H. and Sadaf, S. (2014). Removal of Novacron Golden Yellow dye from aqueous solutions by low-cost agricultural waste: Batch and fixed bed study. Chemistry and Ecology, 30(1), 52-65. https://doi.org/10.1080/02757540.2013.841898.
  • Ngah, W. W., Ab Ghani, S. and Kamari, A. (2005). Adsorption behaviour of Fe (II) and Fe (III) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresource Technology, 96(4), 443-450. https://doi.org/10.1016/j.biortech.2004.05.022.
  • Özer, A., Tanyildizi, M. S. and Tümen, F. (1998). Study of cadmium adsorption from aqueous solution on activated carbon from sugar beet pulp. Environmental Technology, 19(11), 1119-1125. https://doi.org/10.1080/09593331908616770.
  • Öztürk, M , Yıldız, S. ve Aslan, Ş . (2020). Nikel (II) iyonlarinin atık çay’a biyosorpsiyonu: denge, kinetik ve termodinamik çalımaları. Mühendislik Bilimleri ve Tasarım Dergisi, 8(4), 985-998. https://doi.org/10.21923/jesd.742918.
  • Pehlivan, E., Cetin, S. and Yanık, B. H. (2006). Equilibrium studies for the sorption of zinc and copper from aqueous solutions using sugar beet pulp and fly ash. Journal Of Hazardous Materials, 135(1-3), 193-199. https://doi.org/10.1016/j.jhazmat.2005.11.049.
  • Rangabhashiyam, S., Anu, N. and Selvaraju, N. (2013). Sequestration of dye from textile industry wastewater using agricultural waste products as adsorbents. Journal of Environmental Chemical Engineering, 1(4), 629-641. https://doi.org/10.1016/j.jece.2013.07.014.
  • Safa, Y. and Bhatti, H. N. (2011). Adsorptive removal of direct textile dyes by low cost agricultural waste: Application of factorial design analysis. Chemical Engineering Journal, 167(1), 35-41. https://doi.org/10.1016/j.cej.2010.11.103.
  • Sirajudheen, P., Nikitha, M. R., Karthikeyan, P. and Meenakshi, S. (2020). Perceptive removal of toxic azo dyes from water using magnetic Fe3O4 reinforced graphene oxide–carboxymethyl cellulose recyclable composite: Adsorption investigation of parametric studies and their mechanisms. Surfaces and Interfaces, 21, 100648. https://doi.org/10.1016/j.surfin.2020.100648.
  • Subramani, S. E. and Thinakaran, N. (2017). Isotherm, kinetic and thermodynamic studies on the adsorption behaviour of textile dyes onto chitosan. Process Safety and Environmental Protection, 106, 1-10. https://doi.org/10.1016/j.psep.2016.11.024.
  • Şenol, Z. M., Gürsoy, N., Şimşek, S., Özer, A. and Karakuş, N. (2020). Removal of food dyes from aqueous solution by chitosan-vermiculite beads. International Journal Of Biological Macromolecules, 148, 635-646. https://doi.org/10.1016/j.ijbiomac.2020.01.166.
  • Thiyagarajan, E., Saravanan, P., Saranya, P., Gandhi, N. N. and Renganathan, S. (2017). Biosorption of reactive red 2 using positively charged Metapenaeus monoceros shells. Journal of Saudi Chemical Society, 21, S1-S6. https://doi.org/10.1016/j.jscs.2013.05.004.
  • Tunalı Akar, S., Yilmazer, D., Celik, S., Balk, Y. Y. and Akar, T. (2013). On the utilization of a lignocellulosic waste as an excellent dye remover: Modification, characterization and mechanism analysis. Chemical Engineering Journal, 229, 257-266. https://doi.org/10.1016/j.cej.2013.06.009.
  • Tunalı Akar, S., Yilmazer, D., Celik, S., Balk, Y. Y. and Akar, T. (2015). Effective biodecolorization potential of surface modified lignocellulosic industrial waste biomass. Chemical Engineering Journal, 259, 286-292. https://doi.org/10.1016/j.cej.2014.07.112.
  • Tunalı Akar, S., San, E. and Akar, T. (2016). Chitosan–alunite composite: an effective dye remover with high sorption, regeneration and application potential. Carbohydrate Polymers, 143, 318-326. https://doi.org/10.1016/j.carbpol.2016.01.066.
  • ud Din, M., Bhatti, H. N., Yasir, M. and Ashraf, A. (2016). Direct dye biosorption by immobilized barley husk. Desalination and Water Treatment, 57(20), 9263-9271. https://doi.org/10.1080/19443994.2015.1027962.
  • Vakili, M., Rafatullah, M., Salamatinia, B., Abdullah, A. Z., Ibrahim, M. H., Tan, K. B., Gholami, Z. and Amouzgar, P. (2014). Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review. Carbohydrate Polymers, 113, 115-130. https://doi.org/10.1016/j.carbpol.2014.07.007.
  • Vučurović, V. M., Razmovski, R. N. and Tekić, M. N. (2012). Methylene blue (cationic dye) adsorption onto sugar beet pulp: equilibrium isotherm and kinetic studies. Journal of the Taiwan Institute of Chemical Engineers, 43(1), 108-111. https://doi.org/10.1016/j.jtice.2011.06.008.
  • Wang, T., Zhao, P., Lu, N., Chen, H., Zhang, C. and Hou, X. (2016). Facile fabrication of Fe3O4/MIL-101 (Cr) for effective removal of acid red 1 and orange G from aqueous solution. Chemical Engineering Journal, 295, 403-413. https://doi.org/10.1016/j.cej.2016.03.016.
  • Wase, D. A. J. and Forster, C. F. (Eds.). (1997). Biosorbents for Metal Ions. UK: CRC Press.
  • Yang, Y., Wang, G., Wang, B., Li, Z., Jia, X., Zhou, Q. and Zhao, Y. (2011). Biosorption of Acid Black 172 and Congo Red from aqueous solution by nonviable Penicillium YW 01: Kinetic study, equilibrium isotherm and artificial neural network modeling. Bioresource Technology, 102(2), 828-834. https://doi.org/10.1016/j.biortech.2010.08.125.
  • Zeng, L., Chen, Y., Zhang, Q., Guo, X., Peng, Y., Xiao, H., Chen, X. and Luo, J. (2015). Adsorption of Cd (II), Cu (II) and Ni (II) ions by cross-linking chitosan/rectorite nano-hybrid composite microspheres. Carbohydrate Polymers, 130, 333-343. https://doi.org/10.1016/j.carbpol.2015.05.015.
  • Zhou, Y., Lu, J., Zhou, Y. and Liu, Y. (2019). Recent advances for dyes removal using novel adsorbents: a review. Environmental Pollution, 252, 352-365. https://doi.org/10.1016/j.envpol.2019.05.072.
There are 47 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Sema Çelik 0000-0003-4284-823X

Publication Date April 15, 2021
Submission Date May 5, 2020
Acceptance Date January 25, 2021
Published in Issue Year 2021 Volume: 11 Issue: 2

Cite

APA Çelik, S. (2021). Kitosan-şeker pancarı posası biyokompozit sorban sisteminin anyonik boyarmadde biyosorpsiyon potansiyeli. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(2), 325-338. https://doi.org/10.17714/gumusfenbil.732646