Research Article
BibTex RIS Cite

Sahilkent (Bafra, Samsun) yöresindeki alüvyal zeminlerin sıvılaşma potansiyelinin CPT verileri kullanılarak araştırılması

Year 2021, Volume: 11 Issue: 2, 288 - 304, 15.04.2021
https://doi.org/10.17714/gumusfenbil.811876

Abstract

Bu çalışmada Sahilkent (Bafra, Samsun) yöresindeki kil, silt ve kum boyutlu malzemelerden oluşan alüvyal zeminlerin sıvılaşma potansiyeli CPT verileri kullanılarak araştırılmıştır. Çalışma kapsamında Bafra ilçesi genelinde her biri 15 metre derinliğinde 20 adet sondaj yapılmış, bunlardan Sahilkent yöresindeki 5 tanesinden UD tip örnek alıcılarla her 1 metrede 1 adet olacak şekilde örselenmemiş zemin örnekleri temin edilmiştir. Bu örneklerden silt ve kum oranı yüksek olan 20 tanesi üzerinde ıslak elek, hidrometre, plastik limit, likit limit ve doğal su muhtevası tayinleri yapılmıştır. Yapılan ön değerlendirmede farklı derinliklerdeki bazı bölgelerde sıvılaşma potansiyelinin olduğu belirlenmiş ve detaylı sıvılaşma analizlerin yapılabilmesi amacıyla 5 sondaj kuyusunun 1’er metre yakınında 15’er metrelik CPTu deneyi uygulanmıştır. CPTu deneylerinde koni uç direnci, kenar sürtünmesi, efektif gerilme, rölatif sıkılık vb. veriler her 5 cm’de bir kaydedilmiş, sıvılaşma analizlerinde bu verilerin her 1 metre derinlik için ortalamaları alınmıştır. Sıvılaşma analizleri Mw=7.2’lik bir deprem senaryosu için yapılmış ve çalışma alanındaki 15 metrelik zemin katmanının sıvılaşma potansiyeli belirlenmiştir. Yapılan analizler sonucunda Sahilkent yöresinde Mw=7.2’lik bir deprem senaryosu için herhangi bir sıvılaşma olayının gerçekleşmeyeceği belirlenmiştir. Alüvyon malzemesinin ince daneli malzeme oranının yüksek olması, var olan kum ve siltli kum seviyelerinin ise çok sıkı ince daneli zemin katmanları arasında yer almasının zeminin sıvılaşmaya karşı mukavemetini arttırdığı düşünülmektedir.

Supporting Institution

Karadeniz Teknik Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

FBA-2019-8434 ve FDK-2019-8228

References

  • AFAD. (2018). Türkiye Deprem Tehlike Haritası. Ankara: Afet ve Acil Durum Yönetimi Başkanlığı. Erişim adresi: https://www.turkiye.gov.tr/afad-turkiye-deprem-tehlike-haritalari
  • Ambraseys, N. N. (1988). Engineering seismology. Earthquake Engineering and Structural Dynamics, 17, 1–105. https://doi.org/10.1002/eqe.4290170102
  • Andrus, R. D. and Stokoe, K. H. II. (1997). Liquefaction resistance based on shear wave velocity. Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils (ss. 89–128). New York.
  • Arango, I. (1996). Magnitude scaling factors for soil liquefaction evaluations. Journal of Geotechnical Engineering, 122(11), 929–936. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:11(929)
  • Ateş, A. (2017). Gölyaka (Düzce) imara esas yerleşim alanındaki zeminlerin SPT ve sismik hız verileriyle sıvılaşma riskinin araştırılması. Politeknik Dergisi, 20(4), 753-763. https://doi.org/10.2339/politeknik.368977
  • ASTM. (2009). Standard Test Methods For Particle-Size Distribution (Gradation) Of Soils Using Sieve Analysis.
  • ASTM D6913-04(2009)e1, West Conshohocken, PA.
  • ASTM. (2010). Standard Test Methods For Liquid Limit, Plastic Limit, And Plasticity İndex Of Soils. ASTM D4318-10e1, West Conshohocken, PA.
  • ASTM. (2011). Standard Practice For Classification Of Soils For Engineering Purposes (Unified Soil Classification System). ASTM D2487-11, West Conshohocken, PA.
  • Begemann, H. K. (1965). The friction jacket cone as an aid in determining the soil profile. Proc. 6th Int. Conf. Soil Mech. Found. Eng., Vol. I (ss. 17-20). Toronto.
  • Bilge, H. T. ve Çetin, K. Ö. (2017). Silt-Kil Karışımı Zeminlerin Sıvılaşma Potansiyellerinin Belirlenmesi. 4. Uluslararası Deprem Mühendisliği ve Sismoloji Konferansı (ss. 11-19). Eskişehir.
  • Bol, E., Önalp, A., Arel, E., Sert, S. and Özocak, A. (2010). Liquefaction of silts: the Adapazari criteria. Bulletin of Earthquake Engineering, 8(4), 859-873. https://doi.org/10.1007/s10518-010-9174-x
  • Bray, J. D., Sancio, R. B., Durgunoglu, T., Onalp, A., Youd, T. L., Stewart, J. P., Seed, R. B., Cetin, O. K., Bol, E., Baturay, M. B., Christensen, C., and Karadayilar, T. (2004). Subsurface characterization at ground failure sites in Adapazari, Turkey. Journal of Geotechnical and Geoenvironmental Engineering, 130(7), 673-685. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(673)
  • Davis, T. N. (1960). A field report on the Alaska earthquakes of April 7, 1958. Bulletin of the Seismological Society of America, 50(4), 489–510.
  • Dipova, N. ve Cangir, B. (2017). Lara-Kundu (Antalya) düzlüğünün sıvılaşma şiddeti indeksine (LSI) dayalı sıvılaşma haritası. Geological Engineering Journal/Jeoloji Mühendisligi Dergisi, 41(1), 31-46. https://doi.org/10.24232/jmd.311839
  • Dobry, R., Stokoe, K. H., Ladd, R. S. and Youd, T. L. (1981). Liquefaction susceptibility from S-wave velocity. ASCE National Convention (ss. 1-8). New York.
  • Dobry, R., Thevanayagam, S., El-Sekelly, W., Abdoun, T. and Huang, Q. (2019). large-scale modeling of preshaking effect on liquefaction resistance, shear wave velocity, and CPT tip resistance of clean sand. Journal of Geotechnical and Geoenvironmental Engineering, 145(10), 04019065. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002080
  • Duman, E. S. (2013). Erzincan il merkezi ve çevresindeki zeminlerin standart penetrasyon deneyi verileri kullanılarak sıvılaşma potansiyelinin belirlenmesi. Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon.
  • Ersoy, A. F. and Karaca, Z. (2019). Determination of groundwater parameters for drinking and agricultural use in the coastal region of engiz aquifer system, Samsun (Turkey). Arabian Journal of Geosciences, 12(6), 198. https://doi.org/10.1007/s12517-019-4365-5
  • Ertek, M. K. (2015). Sıvılaşma potansiyelinin belirlenmesi ve oturmalara etkisinin incelenmesi: Atakum örneği. Yüksek Lisans Tezi, Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü, Samsun.
  • Esin, G. (2015). Coğrafi bilgi sistemi kullanılarak Burhaniye (Balıkesir) yerleşim alanının sıvılaşma duyarlılık haritasının oluşturulması. Yüksek Lisans Tezi, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, Balıkesir.
  • Huizinga, T. K. (1942). Grondmechanica (Soil Mechanics). Amsterdam: VTK Leuven.
  • Ishihara, K. (1985). Stability of natural deposits during earthquakes. Proceedings of the Eleventh International Conference on Soil Mechanics and Foundation Engineering (ss. 321-376). San Francisco.
  • Işık, A., Ünsal, N., Gürbüz, A. ve Şişman, E. (2016). Fethiye yerleşim alanındaki zeminlerin spt ve kayma dalga hızı verileriyle sıvılaşma potansiyelinin değerlendirilmesi. Gazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 31(4), 1027-1037. https://doi.org/10.17341/gazimmfd.278458
  • Iwasaki, T. (1978). A practical method for assessing soil liquefaction potential based on case studies at various sites in Japon. Proc. Second Int. Conf. Microzonation Safer Construction Research Application (ss. 885-896). San Francisco.
  • Iwasaki, T., Arakawa, T. and Tokida, K. I. (1984). Simplified procedures for assessing soil liquefaction during earthquakes. International Journal of Soil Dynamics and Earthquake Engineering, 3(1), 49-58. https://doi.org/10.1016/0261-7277(84)90027-5
  • Kurnaz, T. F. and Kaya, Y. (2019). A novel ensemble model based on GMDH-type neural network for the prediction of CPT-based soil liquefaction. Environmental Earth Sciences, 78(11), 339. https://doi.org/10.1007/s12665-019-8344-7
  • Liao, S. S. and Whitman, R. V. (1986). A catalog of liquefaction and non-liquefaction occurrences during earthquakes. Massachusetts: Department of Civil Engineering, Massachusetts Institute of Technology.
  • Marcuson, W. F. III. (1978). Definition of terms related to liquefaction. Journal of Geotechnical Engineering Division, 104(9), 1197–1200.
  • Ntritsos, N. and Cubrinovski, M. (2020). A CPT-based effective stress analysis procedure for liquefaction assessment. Soil Dynamics and Earthquake Engineering, 131, 106063. https://doi.org/10.1016/j.soildyn.2020.106063
  • Önalp, A. ve Arel, E. (2002). Siltlerin sıvılaşma yeteneği: Adapazarı kriteri. Zemin Mekaniği ve Temel Mühendisliği Dokuzuncu Ulusal Kongresi (ss. 363-372). Ankara.
  • Öztürk, S. (2016). Sıvılaşmaya karşı jet grout yöntemi ile zemin iyileştirilmesi: Samsun-Tekkeköy örneği. Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon.
  • Plantema, G. (1948). Construction and method of operating a new deep sounding apparatus. Proceedings of the Second International Conference on Soil Mechanics and Foundation Engineering (ss. 277). Rotterdam.
  • Balkema, A. A. (1997). Handbook on Liquefaction Remediation on Reclaimed Land. Rotterdam: Taylor and Francis.
  • Robertson, P. K. (1990). Soil classification using the cone penetration test. Canadian Geotechnical Journal, 27(1), 151-158. https://doi.org/10.1139/t90-014
  • Robertson, P. K. (2016). Cone penetration test (cpt)-based soil behaviour type (sbt) classification system—an update. Canadian Geotechnical Journal, 53(12), 1910-1927. https://doi.org/10.1139/cgj-2016-0044
  • Robertson, P. K. and Campanella, R. G. (1985). Liquefaction potential of sands using the CPT. Journal of Geotechnical Engineering, 111(3), 384-403. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(384)
  • Robertson, P. K. and Wride, C. E. (1998). Evaluating cyclic liquefaction potential using the cone penetration test. Canadian Geotechnical Journal, 35(3), 442-459. https://doi.org/10.1139/t98-017
  • Seed, H. B. and De Alba, P. (1986). Use of SPT and CPT tests for evaluating the liquefaction resistance of sands. Proceedings of Use of in Situ Tests in Geotechnical Engineering (In Situ '86) (ss. 281-302). Blacksburg, ABD.
  • Seed, R. B., Cetin, K. Ö., Moss, R. E. S., Kammerer, A. M., Wu, J., Pestana, J. M., Riemer, M. F., Sancio, R. B., Bray, J. D., Kayen, R. E. and Faris, A. (2003). Recent advances in soil liquefaction engineering: a unified and consistent framework. 26th Annual ASCE Los Angeles Geotechnical Spring Seminar (ss. 1-72) California.
  • Seed, H. B. and Idriss, I. M. (1971). Simplified procedure for evaluating soil liquefaction potential. Journal of Soil Mechanics & Foundations Div. 97, 1249-1273.
  • Seed, H. B. and Wilson, S. D. (1967). The turnagain heights landslide, Anchorage, Alaska (No. 9). Berkeley (ABD): University of California, Department of Civil Engineering, Institute of Transportation and Traffice Engineering.
  • Seed, H. B. and Idriss, I. (1982). Ground motions and soil liquefaction during earthquakes: engineering monographs on earthquake criteria, structural design, and strong motion records. Oakland (ABD): Earthquake Engineering Research Institute.
  • Seed, H. B. Igancio, A., Alberto, G. M., Ascoli, R. G. and Chan, C. K. (1981). Earthquake-ınduced liquefaction near Lake Amatitlan, Guatemala. Journal of Geotechnical and Geoenvironmental Engineering, 107, 501-518.
  • Senneset, K. and Janbu, N. (1985). Shear strength parameters obtained from static cone penetration tests. Chaney, R. ve Demars, K. (Ed.), Strength Testing of Marine Sediments: Laboratory and In-situ Measurements. West Conshohocken: ASTM International.
  • Sert, S., Özocak, A. and Bol, E. (2018). Sıvılaşma bölgelerinde sıvılaşmaz üst tabaka kalınlığının iyileştirme gereksinimine etkisi. Academic Perspective Procedia, 1(1), 1301-1312. https://doi.org/10.33793/acperpro.01.01.202
  • Shibata, T. and Teparaksa, W. (1988). Evaluation of liquefaction potentials of soils using cone penetration tests. Soils and Foundations, 28(2), 49-60. https://doi.org/10.3208/sandf1972.28.2_49
  • Sönmez, B., Dağdelenler, G., Özcan, N.T., Ercanoğlu, M. ve Sönmez, H. (2015). Yapay sinir ağı kullanılarak CPT tabanlı sıvılaşma değerlendirme abağının geliştirilmesi. Yerbilimleri, 36(2), 45-59.
  • Stark, T. D. and Olson, S. M. (1995). Liquefaction resistance using cpt and field case histories. Journal of Geotechnical Engineering, 121(12), 856-869. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:12(856)
  • Temizel, I., Arslan, M., Yücel, C., Abdioğlu, E. and Ruffet, G. (2016). Geochronology and geochemistry of eocene-aged volcanic rocks around the bafra (samsun, n turkey) area: constraints for the ınteraction of lithospheric mantle and crustal melts. Lithos, 258, 92-114. https://doi.org/10.1016/j.lithos.2016.04.023
  • Towhata, I. (2008). Geotechnical Earthquake Engineering. Heidelberg: Springer Science & Bussines Media Turoğlu, H. (2010). Kızılırmak deltası ve yakın çevresinin jeomorfolojik özellikleri ve insan yaşamındaki etkileri. Anadolu Araştırmaları, 19, 1-26.
  • Youd, T. L. and Idriss, I. M. (2001). Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironmental Engineering, 127(4), 297-313. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:4(297)
  • Youd, T. L., Harp, E. L., Keefer, D. K. and Wilson, R.C. (1985). The borah peak, ıdaho earthquake of October 28, 1983Liquefaction. Earthquake Spectra, 2(1), 71-89.

Investigating liquefaction potential of alluvial soils in Sahilkent (Bafra, Samsun) area using CPT data

Year 2021, Volume: 11 Issue: 2, 288 - 304, 15.04.2021
https://doi.org/10.17714/gumusfenbil.811876

Abstract

In this study, liquefaction potential of the alluvial soils consisting of clay, silt, and sand sized materials in Sahilkent (Bafra, Samsun) area was investigated using CPT data. Within the scope of the study, 20 boreholes each having a depth of 15 meters were drilled throughout Bafra district, and one undisturbed soil sample were obtained per meter from 5 of these boreholes located in Sahilkent area. Wet sieve, hydrometer, plastic limit, liquid limit, and natural water content determinations were conducted on 20 samples with high silt and sand content. In the preliminary evaluation, it was determined that there is a liquefaction potential in some regions at different depths, and in order to perform detailed liquefaction analyses, 15-meter-deep CPTu were carried out in 1 meter distance from those 5 borehole locations. In CPTu tests, data including cone tip resistance, sleeve friction, effective stress, relative stiffness, etc. were recorded every 5 cm, and average values of these data for each meter depth were used in the liquefaction analysis. Liquefaction analyses was conducted for an earthquake scenario of Mw = 7.2 and the liquefaction potential of the 15-meter soil layer in the study area was determined. As a result of the analyses, it was determined that no liquefaction will occur for an earthquake scenario of Mw = 7.2 in Sahilkent region. It is thought that high fine-grained content of the alluvium, and the fact that existing clean sand levels are located between fine-grained soil layers increase the resistance of the soil against liquefaction.

Project Number

FBA-2019-8434 ve FDK-2019-8228

References

  • AFAD. (2018). Türkiye Deprem Tehlike Haritası. Ankara: Afet ve Acil Durum Yönetimi Başkanlığı. Erişim adresi: https://www.turkiye.gov.tr/afad-turkiye-deprem-tehlike-haritalari
  • Ambraseys, N. N. (1988). Engineering seismology. Earthquake Engineering and Structural Dynamics, 17, 1–105. https://doi.org/10.1002/eqe.4290170102
  • Andrus, R. D. and Stokoe, K. H. II. (1997). Liquefaction resistance based on shear wave velocity. Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils (ss. 89–128). New York.
  • Arango, I. (1996). Magnitude scaling factors for soil liquefaction evaluations. Journal of Geotechnical Engineering, 122(11), 929–936. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:11(929)
  • Ateş, A. (2017). Gölyaka (Düzce) imara esas yerleşim alanındaki zeminlerin SPT ve sismik hız verileriyle sıvılaşma riskinin araştırılması. Politeknik Dergisi, 20(4), 753-763. https://doi.org/10.2339/politeknik.368977
  • ASTM. (2009). Standard Test Methods For Particle-Size Distribution (Gradation) Of Soils Using Sieve Analysis.
  • ASTM D6913-04(2009)e1, West Conshohocken, PA.
  • ASTM. (2010). Standard Test Methods For Liquid Limit, Plastic Limit, And Plasticity İndex Of Soils. ASTM D4318-10e1, West Conshohocken, PA.
  • ASTM. (2011). Standard Practice For Classification Of Soils For Engineering Purposes (Unified Soil Classification System). ASTM D2487-11, West Conshohocken, PA.
  • Begemann, H. K. (1965). The friction jacket cone as an aid in determining the soil profile. Proc. 6th Int. Conf. Soil Mech. Found. Eng., Vol. I (ss. 17-20). Toronto.
  • Bilge, H. T. ve Çetin, K. Ö. (2017). Silt-Kil Karışımı Zeminlerin Sıvılaşma Potansiyellerinin Belirlenmesi. 4. Uluslararası Deprem Mühendisliği ve Sismoloji Konferansı (ss. 11-19). Eskişehir.
  • Bol, E., Önalp, A., Arel, E., Sert, S. and Özocak, A. (2010). Liquefaction of silts: the Adapazari criteria. Bulletin of Earthquake Engineering, 8(4), 859-873. https://doi.org/10.1007/s10518-010-9174-x
  • Bray, J. D., Sancio, R. B., Durgunoglu, T., Onalp, A., Youd, T. L., Stewart, J. P., Seed, R. B., Cetin, O. K., Bol, E., Baturay, M. B., Christensen, C., and Karadayilar, T. (2004). Subsurface characterization at ground failure sites in Adapazari, Turkey. Journal of Geotechnical and Geoenvironmental Engineering, 130(7), 673-685. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:7(673)
  • Davis, T. N. (1960). A field report on the Alaska earthquakes of April 7, 1958. Bulletin of the Seismological Society of America, 50(4), 489–510.
  • Dipova, N. ve Cangir, B. (2017). Lara-Kundu (Antalya) düzlüğünün sıvılaşma şiddeti indeksine (LSI) dayalı sıvılaşma haritası. Geological Engineering Journal/Jeoloji Mühendisligi Dergisi, 41(1), 31-46. https://doi.org/10.24232/jmd.311839
  • Dobry, R., Stokoe, K. H., Ladd, R. S. and Youd, T. L. (1981). Liquefaction susceptibility from S-wave velocity. ASCE National Convention (ss. 1-8). New York.
  • Dobry, R., Thevanayagam, S., El-Sekelly, W., Abdoun, T. and Huang, Q. (2019). large-scale modeling of preshaking effect on liquefaction resistance, shear wave velocity, and CPT tip resistance of clean sand. Journal of Geotechnical and Geoenvironmental Engineering, 145(10), 04019065. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002080
  • Duman, E. S. (2013). Erzincan il merkezi ve çevresindeki zeminlerin standart penetrasyon deneyi verileri kullanılarak sıvılaşma potansiyelinin belirlenmesi. Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon.
  • Ersoy, A. F. and Karaca, Z. (2019). Determination of groundwater parameters for drinking and agricultural use in the coastal region of engiz aquifer system, Samsun (Turkey). Arabian Journal of Geosciences, 12(6), 198. https://doi.org/10.1007/s12517-019-4365-5
  • Ertek, M. K. (2015). Sıvılaşma potansiyelinin belirlenmesi ve oturmalara etkisinin incelenmesi: Atakum örneği. Yüksek Lisans Tezi, Ondokuz Mayıs Üniversitesi Fen Bilimleri Enstitüsü, Samsun.
  • Esin, G. (2015). Coğrafi bilgi sistemi kullanılarak Burhaniye (Balıkesir) yerleşim alanının sıvılaşma duyarlılık haritasının oluşturulması. Yüksek Lisans Tezi, Balıkesir Üniversitesi Fen Bilimleri Enstitüsü, Balıkesir.
  • Huizinga, T. K. (1942). Grondmechanica (Soil Mechanics). Amsterdam: VTK Leuven.
  • Ishihara, K. (1985). Stability of natural deposits during earthquakes. Proceedings of the Eleventh International Conference on Soil Mechanics and Foundation Engineering (ss. 321-376). San Francisco.
  • Işık, A., Ünsal, N., Gürbüz, A. ve Şişman, E. (2016). Fethiye yerleşim alanındaki zeminlerin spt ve kayma dalga hızı verileriyle sıvılaşma potansiyelinin değerlendirilmesi. Gazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 31(4), 1027-1037. https://doi.org/10.17341/gazimmfd.278458
  • Iwasaki, T. (1978). A practical method for assessing soil liquefaction potential based on case studies at various sites in Japon. Proc. Second Int. Conf. Microzonation Safer Construction Research Application (ss. 885-896). San Francisco.
  • Iwasaki, T., Arakawa, T. and Tokida, K. I. (1984). Simplified procedures for assessing soil liquefaction during earthquakes. International Journal of Soil Dynamics and Earthquake Engineering, 3(1), 49-58. https://doi.org/10.1016/0261-7277(84)90027-5
  • Kurnaz, T. F. and Kaya, Y. (2019). A novel ensemble model based on GMDH-type neural network for the prediction of CPT-based soil liquefaction. Environmental Earth Sciences, 78(11), 339. https://doi.org/10.1007/s12665-019-8344-7
  • Liao, S. S. and Whitman, R. V. (1986). A catalog of liquefaction and non-liquefaction occurrences during earthquakes. Massachusetts: Department of Civil Engineering, Massachusetts Institute of Technology.
  • Marcuson, W. F. III. (1978). Definition of terms related to liquefaction. Journal of Geotechnical Engineering Division, 104(9), 1197–1200.
  • Ntritsos, N. and Cubrinovski, M. (2020). A CPT-based effective stress analysis procedure for liquefaction assessment. Soil Dynamics and Earthquake Engineering, 131, 106063. https://doi.org/10.1016/j.soildyn.2020.106063
  • Önalp, A. ve Arel, E. (2002). Siltlerin sıvılaşma yeteneği: Adapazarı kriteri. Zemin Mekaniği ve Temel Mühendisliği Dokuzuncu Ulusal Kongresi (ss. 363-372). Ankara.
  • Öztürk, S. (2016). Sıvılaşmaya karşı jet grout yöntemi ile zemin iyileştirilmesi: Samsun-Tekkeköy örneği. Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon.
  • Plantema, G. (1948). Construction and method of operating a new deep sounding apparatus. Proceedings of the Second International Conference on Soil Mechanics and Foundation Engineering (ss. 277). Rotterdam.
  • Balkema, A. A. (1997). Handbook on Liquefaction Remediation on Reclaimed Land. Rotterdam: Taylor and Francis.
  • Robertson, P. K. (1990). Soil classification using the cone penetration test. Canadian Geotechnical Journal, 27(1), 151-158. https://doi.org/10.1139/t90-014
  • Robertson, P. K. (2016). Cone penetration test (cpt)-based soil behaviour type (sbt) classification system—an update. Canadian Geotechnical Journal, 53(12), 1910-1927. https://doi.org/10.1139/cgj-2016-0044
  • Robertson, P. K. and Campanella, R. G. (1985). Liquefaction potential of sands using the CPT. Journal of Geotechnical Engineering, 111(3), 384-403. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(384)
  • Robertson, P. K. and Wride, C. E. (1998). Evaluating cyclic liquefaction potential using the cone penetration test. Canadian Geotechnical Journal, 35(3), 442-459. https://doi.org/10.1139/t98-017
  • Seed, H. B. and De Alba, P. (1986). Use of SPT and CPT tests for evaluating the liquefaction resistance of sands. Proceedings of Use of in Situ Tests in Geotechnical Engineering (In Situ '86) (ss. 281-302). Blacksburg, ABD.
  • Seed, R. B., Cetin, K. Ö., Moss, R. E. S., Kammerer, A. M., Wu, J., Pestana, J. M., Riemer, M. F., Sancio, R. B., Bray, J. D., Kayen, R. E. and Faris, A. (2003). Recent advances in soil liquefaction engineering: a unified and consistent framework. 26th Annual ASCE Los Angeles Geotechnical Spring Seminar (ss. 1-72) California.
  • Seed, H. B. and Idriss, I. M. (1971). Simplified procedure for evaluating soil liquefaction potential. Journal of Soil Mechanics & Foundations Div. 97, 1249-1273.
  • Seed, H. B. and Wilson, S. D. (1967). The turnagain heights landslide, Anchorage, Alaska (No. 9). Berkeley (ABD): University of California, Department of Civil Engineering, Institute of Transportation and Traffice Engineering.
  • Seed, H. B. and Idriss, I. (1982). Ground motions and soil liquefaction during earthquakes: engineering monographs on earthquake criteria, structural design, and strong motion records. Oakland (ABD): Earthquake Engineering Research Institute.
  • Seed, H. B. Igancio, A., Alberto, G. M., Ascoli, R. G. and Chan, C. K. (1981). Earthquake-ınduced liquefaction near Lake Amatitlan, Guatemala. Journal of Geotechnical and Geoenvironmental Engineering, 107, 501-518.
  • Senneset, K. and Janbu, N. (1985). Shear strength parameters obtained from static cone penetration tests. Chaney, R. ve Demars, K. (Ed.), Strength Testing of Marine Sediments: Laboratory and In-situ Measurements. West Conshohocken: ASTM International.
  • Sert, S., Özocak, A. and Bol, E. (2018). Sıvılaşma bölgelerinde sıvılaşmaz üst tabaka kalınlığının iyileştirme gereksinimine etkisi. Academic Perspective Procedia, 1(1), 1301-1312. https://doi.org/10.33793/acperpro.01.01.202
  • Shibata, T. and Teparaksa, W. (1988). Evaluation of liquefaction potentials of soils using cone penetration tests. Soils and Foundations, 28(2), 49-60. https://doi.org/10.3208/sandf1972.28.2_49
  • Sönmez, B., Dağdelenler, G., Özcan, N.T., Ercanoğlu, M. ve Sönmez, H. (2015). Yapay sinir ağı kullanılarak CPT tabanlı sıvılaşma değerlendirme abağının geliştirilmesi. Yerbilimleri, 36(2), 45-59.
  • Stark, T. D. and Olson, S. M. (1995). Liquefaction resistance using cpt and field case histories. Journal of Geotechnical Engineering, 121(12), 856-869. https://doi.org/10.1061/(ASCE)0733-9410(1995)121:12(856)
  • Temizel, I., Arslan, M., Yücel, C., Abdioğlu, E. and Ruffet, G. (2016). Geochronology and geochemistry of eocene-aged volcanic rocks around the bafra (samsun, n turkey) area: constraints for the ınteraction of lithospheric mantle and crustal melts. Lithos, 258, 92-114. https://doi.org/10.1016/j.lithos.2016.04.023
  • Towhata, I. (2008). Geotechnical Earthquake Engineering. Heidelberg: Springer Science & Bussines Media Turoğlu, H. (2010). Kızılırmak deltası ve yakın çevresinin jeomorfolojik özellikleri ve insan yaşamındaki etkileri. Anadolu Araştırmaları, 19, 1-26.
  • Youd, T. L. and Idriss, I. M. (2001). Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF Workshops on Evaluation of Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironmental Engineering, 127(4), 297-313. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:4(297)
  • Youd, T. L., Harp, E. L., Keefer, D. K. and Wilson, R.C. (1985). The borah peak, ıdaho earthquake of October 28, 1983Liquefaction. Earthquake Spectra, 2(1), 71-89.
There are 53 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Muhammet Oğuz Sünnetci 0000-0002-5215-3143

Hakan Ersoy 0000-0001-5556-547X

Project Number FBA-2019-8434 ve FDK-2019-8228
Publication Date April 15, 2021
Submission Date October 17, 2020
Acceptance Date January 15, 2021
Published in Issue Year 2021 Volume: 11 Issue: 2

Cite

APA Sünnetci, M. O., & Ersoy, H. (2021). Sahilkent (Bafra, Samsun) yöresindeki alüvyal zeminlerin sıvılaşma potansiyelinin CPT verileri kullanılarak araştırılması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(2), 288-304. https://doi.org/10.17714/gumusfenbil.811876