Research Article
BibTex RIS Cite

Sentinel-1 uydusu ile deprem kaynaklı yüzey çökme analizi: Sivrice-Doğanyol-Pütürge örneği

Year 2021, Volume: 11 Issue: 2, 510 - 521, 15.04.2021
https://doi.org/10.17714/gumusfenbil.861951

Abstract

Depremler, önlem alınmadığı takdirde büyük can ve mal kayıplarına neden olan doğal afetler arasındadır. Türkiye’de fay hareketlerine bağlı olarak geçmişten günümüze yer sarsıntıları yaşanmaktadır. Depremler sırasında oluşan titreşimler geçtikleri ortamlarda çeşitli şekil değiştirme ve deformasyonlara neden olmaktadır. Zeminlerde oluşan deformasyonlar ise etkileşim içerisinde olduğu yapıların stabilitesinin bozulmasına neden olabilmektedir. Bu çalışmada 2020 yılında yer sarsıntıları yaşanan Sivrice/Elazığ başta olmak üzere, Sivrice (Elazığ)-Doğanyol (Malatya)-Pütürge (Malatya) ilçelerini kapsayan alanda deprem kaynaklı yüzey çökme analizi yapılmıştır. 24 Ocak 2020 Cuma günü saat 20.55’de Elazığ ili Sivrice ilçesinde Mw = 6.8 büyüklüğünde bir deprem meydana gelmiştir. Sentinel-1 verileri kullanılarak 14 Haziran 2019 ile 8 Haziran 2020 tarihleri arasındaki çeşitli depremlerle ilişkili yüzey çökmesi SNAP yazılımında belirlenmiştir. Çalışma alanında hesaplanan dikey yer değiştirmenin −19 cm’den (Doğanyol ve Pütürge kuzeydoğusunda) 32 cm’ye kadar (Doğanyol ve Pütürge kuzeyi ile Sivrice güneybatısında) değiştiği belirlenmiştir. Dikey yer değiştirme değerleri jeolojik birimler ile karşılaştırıldığında; yükselme alanları çalışma alanının kuzey-batı kısmındaki Paleojenik birimde tespit edilmiştir. Çalışma alanının güney kısmında yer alan Paleozoik ve prekambriyen metamorfik kayaçların bulunduğu jeolojik birimde ise çökme alanları gözlemlenmiştir. Meydana gelen depremlerle ilişkili yüzey çökme dağılımının belirlenmesi, gelecekte olası büyük deformasyon alanlarının tahminine yardımcı olacağı ve önlemler geliştirilebileceğini ortaya koymuştur.

References

  • Abdikan, S., Imamoglu, M., Alasag, T., Toker, M., Kutoglu, S. H. and Sahin, S. (2019). Insar analysis of ayvacik 2017 (mw 5.3) earthquake swarm (canakkale, nw-Turkey). International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2/W13).
  • AFAD (T.C. İçişleri Bakanlığı Afet Ve Acil Durum Yönetimi Başkanlığı Deprem Dairesi Başkanlığı), (2020). https://deprem.afad.gov.tr.
  • AFAD (T.C. İçişleri Bakanlığı Afet Ve Acil Durum Yönetimi Başkanlığı Deprem Dairesi Başkanlığı). (2020, Şubat). 24 Ocak 2020 Sivrice (Elazığ) depremi raporu. Erişim adresi, https://deprem.afad.gov.tr/download Document?id=1831
  • Ali, M., Shahzad, M. I., Nazeer, M., Mahmood, I. and Zia, I. (2019). Estimation of surface deformation due to Pasni earthquake using RADAR interferometry. Geocarto International, 1-16. https://doi.org/10.1080/10106049.2019.1661031
  • Amos, J. (2016, April 21). Sentinel maps North Korean nuclear blast aftermath. BBC. http://www.bbc.com/news/science-environment-36103812.
  • Bayik, C. (2021). Deformation analysis of 2020 mw 5.7 Karlıova, Turkey, earthquake using DInSAR method with different incidence angle SAR data. Arabian Journal of Geosciences, 14(4), 1-12. https://doi.org/10.1007/s12517-021-06670-x
  • Bell, J.W., Amelung, F. and Henry CD. (2012). InSAR analysis of the 2008 Reno-Mogul earthquake swarm: evidence for westward migration of Walker Lane style dextral faulting. Geophysical Research Letters, 39:1–5. https://doi.org/10.1029/2012GL052795
  • Gabriel, A. K., Goldstein, R. M. and Zebker, H. A. (1989). Mapping small elevation changes over large areas: Differential radar interferometry. Journal of Geophysical Research: Solid Earth, 94(B7), 9183-9191. https://doi.org/10.1029/JB094iB07p09183
  • Gillie, J. L., Rodriguez-Marek, A. and McDaniel, C. (2010). Strength reduction factors for near-fault forward-directivity ground motions. Engineering Structures, 32(1), 273-285. https://doi.org/10.1016/j.engstruct.2009.09.014
  • Gökçeoğlu, C., Şahmaran, M., Unutmaz, B., Aldemir, A., Koçkar, M.K., Sandıkkaya A. ve İçen A. (2020). 24 Ocak 2020 Elazığ Sivrice depremi (mw = 6.8) ön inceleme raporu. Hacettepe Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Ankara.
  • Hempton, M.R. (1985). Structure and deformation history of the Bitlis sture near Lake Hazar, southeastern Turkey. Geological Society of America Bulletin, 96, 233–243. https://doi.org/10.1130/0016-7606(1985)96%3C233:SADHOT%3E2.0.CO;2
  • Herece, E. ve Akay, E. (1992). Karlıova-Çelikhan arasında Doğu Anadolu Fayı. Proceeding of the 9th Petroleum Congress of Turkey. 17–21 February 1992, 361–372, Ankara, Turkey.
  • Hu, J., Li, Z. W., Ding, X. L., Zhu, J. J., Zhang, L. and Sun, Q. (2014). Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth-Science Reviews, 133, 1-17. https://doi.org/10.1016/j.earscirev.2014.02.005
  • Kadirioğlu, F. T., Kartal, R. F., Kılıç, T., Kalafat, D., Duman, T. Y., Azak, T. E., Özalp, S. ve Emre, Ö. (2018). An improved earthquake catalogue (M≥ 4.0) for Turkey and its near vicinity (1900–2012). Bulletin of Earthquake Engineering, 16(8), 3317-3338. https://doi.org/10.1007/s10518-016-0064-8
  • Karslıoğlu, A., Alkayış, M. H., Kalkan, K. ve Onur, M. İ. (2020). Sentinel-1 uydusu ile Konya Karapınar ilçesi bölgesel çökme analizi. Disaster Science and Engineering, 6(2), 8-15.
  • Lakhote, A., Thakkar, M. G., Kandregula, R. S., Jani, C., Kothyari, G. C., Chauhan, G. and Bhandari, S. (2020). Estimation of active surface deformation in the eastern Kachchh region, western India: Application of multi-sensor DInSAR technique. Quaternary International. https://doi.org/10.1016/j.quaint.2020.07.010
  • Li, B., Li, Y., Jiang, W., Su, Z. and Shen, W. (2020). Conjugate ruptures and seismotectonic implications of the 2019 Mindanao earthquake sequence inferred from Sentinel-1 InSAR data. International Journal of Applied Earth Observation and Geoinformation, 90, 102127. https://doi.org/10.1016/j.jag.2020.102127
  • Massonnet D., Rossi M., Carmona C., Adragna F., Peltzer G., Feigl K. and Rabaute T. (1993). The displacement field of the Landers earthquake mapped by radar interferometry. Nature. 364(6433), 138–142. https://doi.org/10.1038/364138a0
  • MTA (Maden Tetkik Ve Arama Genel Müdürlüğü). (2020, Şubat 7). 24 ocak 2020 sivrice (elazığ) depremi (mw=6,8) saha gözlemleri ve değerlendirme raporu. Erişim adresi, https://www.mta.gov.tr/images/duyuru_ek/belgeler/ 609_07-02-2020_2b82a14b.pdf
  • Onur, M. İ., (2007). Dinamik etkiler altında zemin deformasyonunun incelenmesi. Yüksek Lisans Tezi, Anadolu Üniversitesi Fen Bilimleri Enstitüsü. Eskişehir.
  • Refice A., Bovenga F. and Nutricato R. (2004). Stepwise approach to InSAR processing of multitemporal datasets. In: Proc.of FRINGE 2003 Work ESA SP-550. http://earth.esa.int/workshops/fringe03/ proceedings/posters/83_refic.pdf.
  • Solaro, G., De Novellis, V., Castaldo, R., De Luca, C., Lanari, R., Manunta, M. and Casu, F. (2016). Coseismic fault model of Mw 8.3 2015 Illapel earthquake (Chile) retrieved from multi-orbit Sentinel1-A DInSAR measurements. Remote Sensing, 8(4), 323. https://doi.org/10.3390/rs8040323
  • Sowter, A., Amat, M. B. C., Cigna, F., Marsh, S., Athab, A. and Alshammari, L. (2016). Mexico City land subsidence in 2014–2015 with Sentinel-1 IW TOPS: Results using the Intermittent SBAS (ISBAS) technique. International journal of applied earth observation and geoinformation, 52, 230-242. https://doi.org/10.1016/j.jag.2016.06.015
  • Suresh, D. and Yarrakula, K. (2020). InSAR based deformation mapping of earthquake using Sentinel 1A imagery. Geocarto International, 35(5), 559-568. https://doi.org/10.1080/10106049.2018.1544289
  • Şahin H., Alyamaç K.E., Durucan A.R., Demirel B., Ulaş Açikgenç M., Bildik A.T., Durucan C., Demir T., Ulucan M., ve Demirbaş N. (2020). 24 Ocak 2020 Mw 6.8 Sivrice/Elazığ depremi Elazığ bölgesi yapısal hasarlar inceleme ve analiz raporu, Yapı ve Beton Uygulama ve Araştırma Merkezi, Fırat Üniversitesi, Rapor No:2020/D001, Elazığ, Türkiye.
  • Tatar, O., Sözbilir, H., Koçbulut, F., Bozkurt, E., Aksoy, E., Eski, S., Özmen, B., Alan, H. and Metin, Y. (2020). Surface deformations of 24 January 2020 Sivrice (Elazığ)–Doğanyol (Malatya) earthquake (Mw= 6.8) along the Pütürge segment of the East Anatolian Fault Zone and its comparison with Turkey’s 100-year-surface ruptures. Mediterranean Geoscience Reviews, 1-26. https://doi.org/10.1007/s42990-020-00037-2
  • Thomas, A. (2020). Mapping of surface deformation associated with the 5.2 magnitude Stilfontein earthquake of 3 April 2017 using radar interferometry. The Egyptian Journal of Remote Sensing and Space Science. https://doi.org/10.1016/j.ejrs.2020.01.005
  • Thomas, A. (2020). Mapping of surface deformation and displacement associated with the 6.5 magnitude botswana earthquake of 3 april 2017 using dınsar analysis. Geomatics and Environmental Engineering, (14/4), 81-100. https://doi.org/10.7494/geom.2020.14.4.81
  • URL-1, (2020). Erişim adresi, https://sentinel.esa.int/web/sentinel/missions/sentinel-1/instrument-payload. Wang, H., Liu-Zeng, J., Ng, A. M., Ge, L., Javed, F., Long, F. and Shao, Z. (2017). Sentinel-1 observations of the 2016 Menyuan earthquake: A buried reverse event linked to the left-lateral Haiyuan fault. International Journal of Applied Earth Observation and Geoinformation, 61, 14-21. https://doi.org/10.1016/j.jag.2017.04.011
  • Weston, J., Ferreira, A. M. and Funning, G. J. (2012). Systematic comparisons of earthquake source models determined using InSAR and seismic data. Tectonophysics, 532, 61-81. https://doi.org/10.1016/j.tecto.2012.02.001
  • Xu, Guangyu, Xu, C. And Yangmao, W. (2018). Sentinel-1 observation of the 2017 Sangsefid earthquake, northeastern Iran: rupture of a blind reserve-slip fault near the Eastern Kopeh Dagh. Tectonophysics 731–732, 131–138. https://doi. org/10.1016/j.tecto.2018.03.009. https://doi.org/10.1016/j.tecto.2004.04.008
  • Yazgan, E. (1984). Geodynamic evolution of the Eastern Taurus region. In Geology of the Taurus belt. International symposium (pp. 199-208).
  • Zebker, H. A. and Goldstein, R. M. (1986). Topographic mapping from interferometric synthetic aperture radar observations. Journal of Geophysical Research: Solid Earth, 91(B5), 4993-4999. https://doi.org/10.1029/JB091iB05p04993

Earthquake ınduced surface subsidence analysis with Sentinel-1 satellite: Sivrice-Doğanyol-Pütürge

Year 2021, Volume: 11 Issue: 2, 510 - 521, 15.04.2021
https://doi.org/10.17714/gumusfenbil.861951

Abstract

Earthquakes are among the natural disasters that cause great loss of life and property when no precautions are taken. Depending on the fault movement in Turkey, there are earthquakes from past to present. Vibrations that occur during earthquakes cause various deformations in the medium they pass through. The deformations that occur in the soils can cause the stability loss of the structures. In this study, earthquake-induced surface subsidence analysis was carried out in the area covering Sivrice/Elazığ, Sivrice (Elazığ) - Doğanyol (Malatya) -Pütürge (Malatya) districts, where earthquakes were experienced in 2020. On Friday, January 24, 2020 at 20.55, an earthquake of Mw = 6.8 occurred in Sivrice district of Elazig province. Using Sentinel-1 data, surface subsidence associated with various earthquakes between June 14, 2019 and June 8, 2020 was determined in the SNAP software. It is determined that the calculated vertical displacement in the study area varies from −19 cm (northeast of Doğanyol and Pütürge) to 32 cm (north of Doğanyol and Pütürge and southwest of Sivrice). When vertical displacement values are compared with geological units; heave areas are observed in the Paleogenic unit in the north-west part of the study area. Subsidence areas are observed in the geological unit where Paleozoic and precambrian metamorphic rocks located in the southern part of the study area. Determining the surface subsidence distribution associated with the earthquakes revealed that it will help the prediction of possible large deformation areas and precautions can be developed.

References

  • Abdikan, S., Imamoglu, M., Alasag, T., Toker, M., Kutoglu, S. H. and Sahin, S. (2019). Insar analysis of ayvacik 2017 (mw 5.3) earthquake swarm (canakkale, nw-Turkey). International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42(2/W13).
  • AFAD (T.C. İçişleri Bakanlığı Afet Ve Acil Durum Yönetimi Başkanlığı Deprem Dairesi Başkanlığı), (2020). https://deprem.afad.gov.tr.
  • AFAD (T.C. İçişleri Bakanlığı Afet Ve Acil Durum Yönetimi Başkanlığı Deprem Dairesi Başkanlığı). (2020, Şubat). 24 Ocak 2020 Sivrice (Elazığ) depremi raporu. Erişim adresi, https://deprem.afad.gov.tr/download Document?id=1831
  • Ali, M., Shahzad, M. I., Nazeer, M., Mahmood, I. and Zia, I. (2019). Estimation of surface deformation due to Pasni earthquake using RADAR interferometry. Geocarto International, 1-16. https://doi.org/10.1080/10106049.2019.1661031
  • Amos, J. (2016, April 21). Sentinel maps North Korean nuclear blast aftermath. BBC. http://www.bbc.com/news/science-environment-36103812.
  • Bayik, C. (2021). Deformation analysis of 2020 mw 5.7 Karlıova, Turkey, earthquake using DInSAR method with different incidence angle SAR data. Arabian Journal of Geosciences, 14(4), 1-12. https://doi.org/10.1007/s12517-021-06670-x
  • Bell, J.W., Amelung, F. and Henry CD. (2012). InSAR analysis of the 2008 Reno-Mogul earthquake swarm: evidence for westward migration of Walker Lane style dextral faulting. Geophysical Research Letters, 39:1–5. https://doi.org/10.1029/2012GL052795
  • Gabriel, A. K., Goldstein, R. M. and Zebker, H. A. (1989). Mapping small elevation changes over large areas: Differential radar interferometry. Journal of Geophysical Research: Solid Earth, 94(B7), 9183-9191. https://doi.org/10.1029/JB094iB07p09183
  • Gillie, J. L., Rodriguez-Marek, A. and McDaniel, C. (2010). Strength reduction factors for near-fault forward-directivity ground motions. Engineering Structures, 32(1), 273-285. https://doi.org/10.1016/j.engstruct.2009.09.014
  • Gökçeoğlu, C., Şahmaran, M., Unutmaz, B., Aldemir, A., Koçkar, M.K., Sandıkkaya A. ve İçen A. (2020). 24 Ocak 2020 Elazığ Sivrice depremi (mw = 6.8) ön inceleme raporu. Hacettepe Üniversitesi Mühendislik Fakültesi İnşaat Mühendisliği Bölümü, Ankara.
  • Hempton, M.R. (1985). Structure and deformation history of the Bitlis sture near Lake Hazar, southeastern Turkey. Geological Society of America Bulletin, 96, 233–243. https://doi.org/10.1130/0016-7606(1985)96%3C233:SADHOT%3E2.0.CO;2
  • Herece, E. ve Akay, E. (1992). Karlıova-Çelikhan arasında Doğu Anadolu Fayı. Proceeding of the 9th Petroleum Congress of Turkey. 17–21 February 1992, 361–372, Ankara, Turkey.
  • Hu, J., Li, Z. W., Ding, X. L., Zhu, J. J., Zhang, L. and Sun, Q. (2014). Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth-Science Reviews, 133, 1-17. https://doi.org/10.1016/j.earscirev.2014.02.005
  • Kadirioğlu, F. T., Kartal, R. F., Kılıç, T., Kalafat, D., Duman, T. Y., Azak, T. E., Özalp, S. ve Emre, Ö. (2018). An improved earthquake catalogue (M≥ 4.0) for Turkey and its near vicinity (1900–2012). Bulletin of Earthquake Engineering, 16(8), 3317-3338. https://doi.org/10.1007/s10518-016-0064-8
  • Karslıoğlu, A., Alkayış, M. H., Kalkan, K. ve Onur, M. İ. (2020). Sentinel-1 uydusu ile Konya Karapınar ilçesi bölgesel çökme analizi. Disaster Science and Engineering, 6(2), 8-15.
  • Lakhote, A., Thakkar, M. G., Kandregula, R. S., Jani, C., Kothyari, G. C., Chauhan, G. and Bhandari, S. (2020). Estimation of active surface deformation in the eastern Kachchh region, western India: Application of multi-sensor DInSAR technique. Quaternary International. https://doi.org/10.1016/j.quaint.2020.07.010
  • Li, B., Li, Y., Jiang, W., Su, Z. and Shen, W. (2020). Conjugate ruptures and seismotectonic implications of the 2019 Mindanao earthquake sequence inferred from Sentinel-1 InSAR data. International Journal of Applied Earth Observation and Geoinformation, 90, 102127. https://doi.org/10.1016/j.jag.2020.102127
  • Massonnet D., Rossi M., Carmona C., Adragna F., Peltzer G., Feigl K. and Rabaute T. (1993). The displacement field of the Landers earthquake mapped by radar interferometry. Nature. 364(6433), 138–142. https://doi.org/10.1038/364138a0
  • MTA (Maden Tetkik Ve Arama Genel Müdürlüğü). (2020, Şubat 7). 24 ocak 2020 sivrice (elazığ) depremi (mw=6,8) saha gözlemleri ve değerlendirme raporu. Erişim adresi, https://www.mta.gov.tr/images/duyuru_ek/belgeler/ 609_07-02-2020_2b82a14b.pdf
  • Onur, M. İ., (2007). Dinamik etkiler altında zemin deformasyonunun incelenmesi. Yüksek Lisans Tezi, Anadolu Üniversitesi Fen Bilimleri Enstitüsü. Eskişehir.
  • Refice A., Bovenga F. and Nutricato R. (2004). Stepwise approach to InSAR processing of multitemporal datasets. In: Proc.of FRINGE 2003 Work ESA SP-550. http://earth.esa.int/workshops/fringe03/ proceedings/posters/83_refic.pdf.
  • Solaro, G., De Novellis, V., Castaldo, R., De Luca, C., Lanari, R., Manunta, M. and Casu, F. (2016). Coseismic fault model of Mw 8.3 2015 Illapel earthquake (Chile) retrieved from multi-orbit Sentinel1-A DInSAR measurements. Remote Sensing, 8(4), 323. https://doi.org/10.3390/rs8040323
  • Sowter, A., Amat, M. B. C., Cigna, F., Marsh, S., Athab, A. and Alshammari, L. (2016). Mexico City land subsidence in 2014–2015 with Sentinel-1 IW TOPS: Results using the Intermittent SBAS (ISBAS) technique. International journal of applied earth observation and geoinformation, 52, 230-242. https://doi.org/10.1016/j.jag.2016.06.015
  • Suresh, D. and Yarrakula, K. (2020). InSAR based deformation mapping of earthquake using Sentinel 1A imagery. Geocarto International, 35(5), 559-568. https://doi.org/10.1080/10106049.2018.1544289
  • Şahin H., Alyamaç K.E., Durucan A.R., Demirel B., Ulaş Açikgenç M., Bildik A.T., Durucan C., Demir T., Ulucan M., ve Demirbaş N. (2020). 24 Ocak 2020 Mw 6.8 Sivrice/Elazığ depremi Elazığ bölgesi yapısal hasarlar inceleme ve analiz raporu, Yapı ve Beton Uygulama ve Araştırma Merkezi, Fırat Üniversitesi, Rapor No:2020/D001, Elazığ, Türkiye.
  • Tatar, O., Sözbilir, H., Koçbulut, F., Bozkurt, E., Aksoy, E., Eski, S., Özmen, B., Alan, H. and Metin, Y. (2020). Surface deformations of 24 January 2020 Sivrice (Elazığ)–Doğanyol (Malatya) earthquake (Mw= 6.8) along the Pütürge segment of the East Anatolian Fault Zone and its comparison with Turkey’s 100-year-surface ruptures. Mediterranean Geoscience Reviews, 1-26. https://doi.org/10.1007/s42990-020-00037-2
  • Thomas, A. (2020). Mapping of surface deformation associated with the 5.2 magnitude Stilfontein earthquake of 3 April 2017 using radar interferometry. The Egyptian Journal of Remote Sensing and Space Science. https://doi.org/10.1016/j.ejrs.2020.01.005
  • Thomas, A. (2020). Mapping of surface deformation and displacement associated with the 6.5 magnitude botswana earthquake of 3 april 2017 using dınsar analysis. Geomatics and Environmental Engineering, (14/4), 81-100. https://doi.org/10.7494/geom.2020.14.4.81
  • URL-1, (2020). Erişim adresi, https://sentinel.esa.int/web/sentinel/missions/sentinel-1/instrument-payload. Wang, H., Liu-Zeng, J., Ng, A. M., Ge, L., Javed, F., Long, F. and Shao, Z. (2017). Sentinel-1 observations of the 2016 Menyuan earthquake: A buried reverse event linked to the left-lateral Haiyuan fault. International Journal of Applied Earth Observation and Geoinformation, 61, 14-21. https://doi.org/10.1016/j.jag.2017.04.011
  • Weston, J., Ferreira, A. M. and Funning, G. J. (2012). Systematic comparisons of earthquake source models determined using InSAR and seismic data. Tectonophysics, 532, 61-81. https://doi.org/10.1016/j.tecto.2012.02.001
  • Xu, Guangyu, Xu, C. And Yangmao, W. (2018). Sentinel-1 observation of the 2017 Sangsefid earthquake, northeastern Iran: rupture of a blind reserve-slip fault near the Eastern Kopeh Dagh. Tectonophysics 731–732, 131–138. https://doi. org/10.1016/j.tecto.2018.03.009. https://doi.org/10.1016/j.tecto.2004.04.008
  • Yazgan, E. (1984). Geodynamic evolution of the Eastern Taurus region. In Geology of the Taurus belt. International symposium (pp. 199-208).
  • Zebker, H. A. and Goldstein, R. M. (1986). Topographic mapping from interferometric synthetic aperture radar observations. Journal of Geophysical Research: Solid Earth, 91(B5), 4993-4999. https://doi.org/10.1029/JB091iB05p04993
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Asena Karslıoğlu 0000-0001-5178-4069

Mehmet Hanifi Alkayış 0000-0003-0177-043X

Mehmet İnanç Onur 0000-0002-2421-4471

Publication Date April 15, 2021
Submission Date January 15, 2021
Acceptance Date March 13, 2021
Published in Issue Year 2021 Volume: 11 Issue: 2

Cite

APA Karslıoğlu, A., Alkayış, M. H., & Onur, M. İ. (2021). Sentinel-1 uydusu ile deprem kaynaklı yüzey çökme analizi: Sivrice-Doğanyol-Pütürge örneği. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(2), 510-521. https://doi.org/10.17714/gumusfenbil.861951