Research Article
BibTex RIS Cite

Nano tipi ve granüle yüksek fırın cürufu ikame oranının çimento harçlarına olan etkisi

Year 2021, Volume: 11 Issue: 2, 482 - 496, 15.04.2021
https://doi.org/10.17714/gumusfenbil.867858

Abstract

Mevcut deneysel çalışmada, yüksek hacimde granüle yüksek fırın cürufu içeren harçların taze ve sertleşmiş özellikleri incelenmiştir. Bu amaçla, TS EN 197-1’e göre minimum şartları sağlayan ve %1, %2, %3 ve %4 ikame oranlarında nano kalsit, nano SiO2 ve nano Al2O3 ihtiva eden toplamda 58 karışım tasarlanmıştır. İlk olarak tüm karışımların 2, 7 ve 28. Günlerde mekanik özellikleri incelenmiş, daha sonra seçilen 8 karışım ile harmanlanmış çimento pastaları hazırlanarak standart kıvam suyu ve priz süreleri tespit edilmiştir. Test sonuçları, yüksek hacimlerde granüle yüksek fırın cürufu kullanımının erken yaş dayanım düşüşü ile neticelendiğini göstermiştir. Çekirdeklenme ve kimyasal etkinin bir sonucu olarak nano malzemelerin kullanıldığı karışımların priz sürelerinde kısalma ve erken yaş basınç dayanımı gelişimlerinde iyileşme gözlemlenmiştir. Nano malzeme ikame oranı artıkça basınç dayanımlarında kısmî de olsa bir düşüş gözlemlenirken dayanım gelişimine en yüksek katkının %1-2 arası ikame oranlarında gözlemlendiği tespit edilmiştir. Nano SiO2, Nano Al2O3 ve nano kalsit kullanımıyla hem çekirdeklenme hem de kimyasal etkinin bir netice olarak harçların performans özelliklerinde belirgin iyileşmeler saptanmıştır. %81 oranında granüle yüksek fırın cürufunun ikame edildiği CEM III-C tipli katkılı çimentolarda tüm nano tipleri için %1 nano malzeme kullanımıyla CEM III-C 32.5 elde edilmiştir.

References

  • Abhilash, P. P., Nayak, D. K., Sangoju, B., Kumar, R. and Kumar, V. (2021). Effect of nano-silica in concrete; a review. Construction and Building Materials, 278, 122347. https://doi.org/10.1016/j.conbuildmat.2021.122347
  • Aghaeipour, A. and Madhkhan, M. (2017). Effect of ground granulated blast furnace slag (GGBFS) on RCCP durability. Construction and Building Materials, 141, 533-541. https://doi.org/10.1016/j.conbuildmat.2017.03.019
  • Alonso, M. C., García Calvo, J. L., Sánchez, M. and Fernandez, A. (2012). Ternary mixes with high mineral additions contents and corrosion related properties. Materials and corrosion, 63(12), 1078-1086. https://doi.org/10.1002/maco.201206654
  • Atiş, C. D. and Bilim, C. (2007). Wet and dry cured compressive strength of concrete containing ground granulated blast-furnace slag. Building and Environment, 42(8), 3060-3065. https://doi.org/10.1016/j.buildenv.2006.07.027
  • Bai, P., Sharratt, P., Yeo, T. Y. and Bu, J. (2014). A facile route to preparation of high purity nanoporous silica from acid-leached residue of serpentine. Journal of nanoscience and nanotechnology, 14(9), 6915-6922. https://doi.org/10.1166/jnn.2014.8963
  • Bakharev, T. (2005). Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cement and Concrete Research, 35(6), 1233-1246. https://doi.org/10.1016/j.cemconres.2004.09.002
  • Barbhuiya, S., Mukherjee, S. and Nikraz, H. (2014). Effects of nano-Al2O3 on early-age microstructural properties of cement paste. Construction and Building Materials, 52, 189-193. https://doi.org/10.1016/j.conbuildmat.2013.11.010
  • Benhelal, E., Zahedi, G., Shamsaei, E., and Bahadori, A. (2013). Global strategies and potentials to curb CO2 emissions in cement industry. Journal of cleaner production, 51, 142-161. https://doi.org/10.1016/j.jclepro.2012.10.049
  • Björnström, J., Martinelli, A., Matic, A., Börjesson, L. and Panas, I. (2004). Accelerating effects of colloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement. Chemical Physics Letters, 392(1-3), 242-248. https://doi.org/10.1016/j.cplett.2004.05.071
  • Cao, M., Ming, X., He, K., Li, L. and Shen, S. (2019). Effect of macro-, micro-and nano-calcium carbonate on properties of cementitious composites—A review. Materials, 12(5), 781. https://doi.org/10.3390/ma12050781
  • Choi, Y. C., Kim, J. and Choi, S. (2017). Mercury intrusion porosimetry characterization of micropore structures of high-strength cement pastes incorporating high volume ground granulated blast-furnace slag. Construction and Building Materials, 137, 96-103. https://doi.org/10.1016/j.conbuildmat.2017.01.076
  • Çiftçi, M. (2020). Nano boyutlu taneciklerin kullanımıyla yüksek hacimde yüksek fırın cürufu içeren katkılı çimento tasarımı. Yüksek Lisans Tezi, Batman Üniversitesi Fen Bilimleri Enstitüsü, Batman.
  • Bentz, D. P., Ardani, A., Barrett, T., Jones, S. Z., Lootens, D., Peltz, M. A., ... and Weiss, W. J. (2015). Multi-scale investigation of the performance of limestone in concrete. Construction and Building Materials, 75, 1-10. https://doi.org/10.1016/j.conbuildmat.2014.10.042
  • Demirboğa, R., Türkmen, İ. and Karakoc, M. B. (2004). Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete. Cement and concrete research, 34(12), 2329-2336. https://doi.org/10.1016/j.cemconres.2004.04.017
  • Demirhan, S. (2017). Nano malzemeler ile modifiye edilmiş yüksek performansli hibrid lif donatili betonlar, Doktora Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Demirhan, S., Turk, K. and Ulugerger, K. (2019). Fresh and hardened properties of self-consolidating Portland limestone cement mortars: Effect of high-volume limestone powder replaced by cement. Construction and Building, Materials, 196, 115-125. https://doi.org/10.1016/j.conbuildmat.2018.11.111
  • Demirhan, S. (2020). Combined effects of nano-sized calcite and fly ash on hydration and microstructural properties of mortars. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(6), 1051-1067. https://doi.org/10.35414/akufemubid.825862
  • Duran-Herrera, A., Juárez, C. A., Valdez, P. and Bentz, D. P. (2011). Evaluation of sustainable high-volume fly ash concretes. Cement and Concrete Composites, 33(1), 39-45. https://doi.org/10.1016/j.cemconcomp.2010.09.020
  • Elchalakani, M., Aly, T. and Abu-Aisheh, E. (2014). Sustainable concrete with high volume GGBFS to build Masdar City in the UAE. Case Studies in Construction Materials, 1, 10-24. https://doi.org/10.1016/j.cscm.2013.11.001
  • Flower, D. J. and Sanjayan, J. G. (2007). Greenhouse gas emissions due to concrete manufacture. The international Journal of life cycle assessment, 12(5), 282. https://doi.org/10.1065/lca2007.05.327
  • Gowda, R., Narendra, H., Rangappa, D. and Prabhakar, R. (2017). Effect of nano-alumina on workability, compressive strength and residual strength at elevated temperature of cement mortar. Materials Today: Proceedings, 4(11), 12152-12156. https://doi.org/10.1016/j.matpr.2017.09.144
  • Hooton, R. D. (2000). Canadian use of ground granulated blast-furnace slag as a supplementary cementing material for enhanced performance of concrete. Canadian Journal of Civil Engineering, 27(4), 754-760. https://doi.org/10.1139/l00-014
  • Kong, D. L. and Sanjayan, J. G. (2008). Damage behavior of geopolymer composites exposed to elevated temperatures. Cement and Concrete Composites, 30(10), 986-991. https://doi.org/10.1016/j.cemconcomp.2008.08.001
  • Kumar, S., Kumar, R., Bandopadhyay, A., Alex, T. C., Kumar, B. R., Das, S. K. and Mehrotra, S. P. (2008). Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of portland slag cement. Cement and Concrete Composites, 30(8), 679-685. https://doi.org/10.1016/j.cemconcomp.2008.05.005
  • Li, H., Xiao, H. G., Yuan, J. and Ou, J. (2004). Microstructure of cement mortar with nano-particles. Composites part B: Engineering, 35(2), 185-189. https://doi.org/10.1016/S1359-8368(03)00052-0
  • Li, J., Tharakan, P., Macdonald, D. and Liang, X. (2013). Technological, economic and financial prospects of carbon dioxide capture in the cement industry. Energy Policy, 61, 1377-1387. https://doi.org/10.1016/j.enpol.2013.05.082
  • Li, Q. L., Chen, M. Z., Liu, F., Wu, S. P. and Sang, Y. (2015). Effect of superfine blast furnace slag powder on properties of cement-based materials. Materials Research Innovations, 19(sup1), S1-168. https://doi.org/10.1179/1432891715Z.0000000001397
  • Liu, C., He, X., Deng, X., Wu, Y., Zheng, Z., Liu, J. and Hui, D. (2020). Application of nanomaterials in ultra-high-performance concrete: A review. Nanotechnology Reviews, 9(1), 1427-1444. https://doi.org/10.1515/ntrev-2020-0107
  • Nazari, A. and Riahi, S. (2011). Improvement compressive strength of concrete in different curing media by Al2O3 nanoparticles. Materials Science and Engineering: A, 528(3), 1183-1191. https://doi.org/10.1016/j.msea.2010.09.098
  • Ng, D. S., Paul, S. C., Anggraini, V., Kong, S. Y., Qureshi, T. S., Rodriguez, C. R. and Šavija, B. (2020). Influence of SiO2, TiO2 and Fe2O3 nanoparticles on the properties of fly ash blended cement mortars. Construction and Building Materials, 258, 119627. https://doi.org/10.1016/j.conbuildmat.2020.119627
  • Norhasri, M. M., Hamidah, M. S. and Fadzil, A. M. (2017). Applications of using nano material in concrete: A review. Construction and Building Materials, 133, 91-97. https://doi.org/10.1016/j.conbuildmat.2016.12.005
  • Orakzai, M. A. (2021). Hybrid effect of nano-alumina and nano-titanium dioxide on Mechanical properties of concrete. Case Studies in Construction Materials, 14, e00483. https://doi.org/10.1016/j.cscm.2020.e00483
  • Oner, A. and Akyuz, S. (2007). An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cement and Concrete Composites, 29(6), 505-514. https://doi.org/10.1016/j.cemconcomp.2007.01.001
  • Özbay, E., Erdemir, M. and Durmuş, H. İ. (2016). Utilization and efficiency of ground granulated blast furnace slag on concrete properties–A review. Construction and Building Materials, 105, 423-434. https://doi.org/10.1016/j.conbuildmat.2015.12.153
  • Polat, R., Demirboğa, R. and Karagöl, F. (2019). Mechanical and physical behavior of cement paste and mortar incorporating nano‐CaO. Structural Concrete, 20(1), 361-370. https://doi.org/10.1002/suco.201800132
  • Poudyal, L., Adhikari, K. and Won, M. (2021). Mechanical and durability properties of Portland limestone cement (PLC) incorporated with nano calcium carbonate (CaCO3). Materials, 14(4), 905. https://doi.org/10.3390/ma14040905
  • Qing, Y., Zenan, Z., Deyu, K. and Rongshen, C. (2007). Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Construction and building materials, 21(3), 539-545. https://doi.org/10.1016/j.conbuildmat.2005.09.001
  • Rao, G. M. and Rao, T. G. (2015). Final setting time and compressive strength of fly ash and GGBS-based geopolymer paste and mortar. Arabian Journal for Science and Engineering, 40(11), 3067-3074. https://doi.org/10.1007/s13369-015-1757-z
  • Rashad, A. M. (2014). A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash. Materials and Design, 53, 1005-1025. https://doi.org/10.1016/j.matdes.2013.07.074
  • Rashad, A. M. (2015). An investigation of high-volume fly ash concrete blended with slag subjected to elevated temperatures. Journal of Cleaner Production, 93, 47-55. https://doi.org/10.1016/j.jclepro.2015.01.031
  • Rowles, M. and O'connor, B. (2003). Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite. Journal of Materials Chemistry, 13(5), 1161-1165. https://doi.org/10.1039/B212629J
  • Şahmaran, M., Keskin, S. B., Ozerkan, G. and Yaman, I. O. (2008). Self-healing of mechanically loaded self-consolidating concretes with high volumes of fly ash. Cement and Concrete Composites, 30(10), 872-879. https://doi.org/10.1016/j.cemconcomp.2008.07.001
  • Schmidt, M., Amrhein, K., Braun, T., Glotzbach, C., Kamaruddin, S. and Tänzer, R. (2013). Nanotechnological improvement of structural materials–impact on material performance and structural design. Cement and Concrete Composites, 36, 3-7. https://doi.org/10.1016/j.cemconcomp.2012.11.003
  • Shaikh, F. U. A. and Hosan, A. (2019). Effect of nano silica on compressive strength and microstructures of high volume blast furnace slag and high volume blast furnace slag-fly ash blended pastes. Sustainable Materials and Technologies, 20, e00111. https://doi.org/10.1016/j.susmat.2019.e00111
  • Shaikh, F. U. and Supit, S. W. (2014). Mechanical and durability properties of high volume fly ash (HVFA) concrete containing calcium carbonate (CaCO3) nanoparticles. Construction and building materials, 70, 309-321. https://doi.org/10.1016/j.conbuildmat.2014.07.099
  • Sobolev, K., Flores, I., Torres-Martinez, L. M., Valdez, P. L., Zarazua, E. and Cuellar, E. L. (2009). Engineering of SiO 2 nanoparticles for optimal performance in nano cement-based materials. In Nanotechnology in construction 3 (pp. 139-148). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00980-8_18
  • Sumesh, M., Alengaram, U. J., Jumaat, M. Z., Mo, K. H. and Alnahhal, M. F. (2017). Incorporation of nanomaterials in cement composite and geopolymer based paste and mortar–A review. Construction and Building Materials, 148, 62-84. https://doi.org/10.1016/j.conbuildmat.2017.04.206
  • Sun, J., Cao, X., Xu, Z., Yu, Z., Zhang, Y., Hou, G. and Shen, X. (2020). Contribution of core/shell TiO2@ SiO2 nanoparticles to the hydration of Portland cement. Construction and Building Materials, 233, 117127. https://doi.org/10.1016/j.conbuildmat.2019.117127
  • Sato, T. and Diallo, F. (2010). Seeding effect of nano-CaCO3 on the hydration of tricalcium silicate. Transportation Research Record, 2141(1), 61-67. https://doi.org/10.3141/2141-11
  • TS EN 196-1, (2016). Çimento deney metotları-Bölüm 1: Dayanım tayini. Türk Standartları Enstitüsü.
  • TS EN 196-3, (2017). Çimento deney yöntemleri-Bölüm 3: Priz süreleri ve genleşme tayini.
  • TS EN 197-1, (2012). Çimento-Bölüm 1: Genel çimentolar- Bileşim, özellikler ve uygunluk kriterleri.
  • Wainwright, P. J. and Rey, N. (2000). The influence of ground granulated blastfurnace slag (GGBS) additions and time delay on the bleeding of concrete. Cement and Concrete Composites, 22(4), 253-257. https://doi.org/10.1016/S0958-9465(00)00024-X
  • Wang, D., Shi, C., Farzadnia, N., Shi, Z., Jia, H. and Ou, Z. (2018). A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Construction and Building Materials, 181, 659-672. https://doi.org/10.1016/j.conbuildmat.2018.06.075
  • Wu, Q., Miao, W. S., Zhang, Y. D., Gao, H. J. and Hui, D. (2020). Mechanical properties of nanomaterials: A review. Nanotechnology Reviews, 9(1), 259-273. https://doi.org/10.1515/ntrev-2020-0021
  • Yalçınkaya, Ç. and Yazıcı, H. (2017). Effects of ambient temperature and relative humidity on early-age shrinkage of UHPC with high-volume mineral admixtures. Construction and Building Materials, 144, 252-259. https://doi.org/10.1016/j.conbuildmat.2017.03.198
  • Yang, H., Che, Y. and Leng, F. (2018). High volume fly ash mortar containing nano-calcium carbonate as a sustainable cementitious material: microstructure and strength development. Scientific reports, 8(1), 1-11. https://doi.org/10.1038/s41598-018-34851-4
  • Zaitri, R., Bederina, M., Bouziani, T., Makhloufi, Z. and Hadjoudja, M. (2014). Development of high performances concrete based on the addition of grinded dune sand and limestone rock using the mixture design modelling approach. Construction and Building Materials, 60, 8-16. https://doi.org/10.1016/j.conbuildmat.2014.02.062
  • Zhao, Y., Qiu, J., Xing, J. and Sun, X. (2020-a). Chemical activation of binary slag cement with low carbon footprint. Journal of Cleaner Production, 267, 121455. https://doi.org/10.1016/j.jclepro.2020.121455
  • Zhao, Z., Qi, T., Zhou, W., Hui, D., Xiao, C., Qi, J. and Zhao, Z. (2020-b). A review on the properties, reinforcing effects, and commercialization of nanomaterials for cement-based materials. Nanotechnology Reviews, 9(1), 303-322. https://doi.org/10.1515/ntrev-2020-0023
  • Zhuang, S. and Wang, Q. (2021). Inhibition mechanisms of steel slag on the early-age hydration of cement. Cement and Concrete Research, 140, 106283. https://doi.org/10.1016/j.cemconres.2020.106283

Effect of nano type and slag replacement level on cement mortars

Year 2021, Volume: 11 Issue: 2, 482 - 496, 15.04.2021
https://doi.org/10.17714/gumusfenbil.867858

Abstract

In the current experimental study, fresh and hardened properties of high-volume ground granulated blast furnace slag blended cements were investigated. For this purpose, fifty-eight cement mortars satisfying minimum requirements of TS EN 197-1 were produced and nano calcite, nano SiO2 and nano Al2O3 were replaced by the cement up to a replacement level of 4% (which were 1%, 2%, 3% and 4%). First of all, the mechanical properties of mixtures were examined at the curing ages of 2, 7 and 28 days and then standard consistency and setting times of eight selected mixtures were determined. Test results showed that increase in the replacement level of slag was resulted in decrease in early age compressive strength. As a result of both seeding (nucleation) and chemical effect, decrease in setting time and enhancement in early age strength development of mixtures including nanomaterials were observed. Even though increase in replacement of nanomaterials resulted in a slight decrease in compressive strength of the mixtures, the best enhancements were obtained with the replacement level of 1%. As a result of this, minimum requirements of CEM III-C 32.5 were achieved in the mortars including CEM III-C type cement with a slag replacement level of 81% and modified by 1% of nanomaterial.

References

  • Abhilash, P. P., Nayak, D. K., Sangoju, B., Kumar, R. and Kumar, V. (2021). Effect of nano-silica in concrete; a review. Construction and Building Materials, 278, 122347. https://doi.org/10.1016/j.conbuildmat.2021.122347
  • Aghaeipour, A. and Madhkhan, M. (2017). Effect of ground granulated blast furnace slag (GGBFS) on RCCP durability. Construction and Building Materials, 141, 533-541. https://doi.org/10.1016/j.conbuildmat.2017.03.019
  • Alonso, M. C., García Calvo, J. L., Sánchez, M. and Fernandez, A. (2012). Ternary mixes with high mineral additions contents and corrosion related properties. Materials and corrosion, 63(12), 1078-1086. https://doi.org/10.1002/maco.201206654
  • Atiş, C. D. and Bilim, C. (2007). Wet and dry cured compressive strength of concrete containing ground granulated blast-furnace slag. Building and Environment, 42(8), 3060-3065. https://doi.org/10.1016/j.buildenv.2006.07.027
  • Bai, P., Sharratt, P., Yeo, T. Y. and Bu, J. (2014). A facile route to preparation of high purity nanoporous silica from acid-leached residue of serpentine. Journal of nanoscience and nanotechnology, 14(9), 6915-6922. https://doi.org/10.1166/jnn.2014.8963
  • Bakharev, T. (2005). Durability of geopolymer materials in sodium and magnesium sulfate solutions. Cement and Concrete Research, 35(6), 1233-1246. https://doi.org/10.1016/j.cemconres.2004.09.002
  • Barbhuiya, S., Mukherjee, S. and Nikraz, H. (2014). Effects of nano-Al2O3 on early-age microstructural properties of cement paste. Construction and Building Materials, 52, 189-193. https://doi.org/10.1016/j.conbuildmat.2013.11.010
  • Benhelal, E., Zahedi, G., Shamsaei, E., and Bahadori, A. (2013). Global strategies and potentials to curb CO2 emissions in cement industry. Journal of cleaner production, 51, 142-161. https://doi.org/10.1016/j.jclepro.2012.10.049
  • Björnström, J., Martinelli, A., Matic, A., Börjesson, L. and Panas, I. (2004). Accelerating effects of colloidal nano-silica for beneficial calcium–silicate–hydrate formation in cement. Chemical Physics Letters, 392(1-3), 242-248. https://doi.org/10.1016/j.cplett.2004.05.071
  • Cao, M., Ming, X., He, K., Li, L. and Shen, S. (2019). Effect of macro-, micro-and nano-calcium carbonate on properties of cementitious composites—A review. Materials, 12(5), 781. https://doi.org/10.3390/ma12050781
  • Choi, Y. C., Kim, J. and Choi, S. (2017). Mercury intrusion porosimetry characterization of micropore structures of high-strength cement pastes incorporating high volume ground granulated blast-furnace slag. Construction and Building Materials, 137, 96-103. https://doi.org/10.1016/j.conbuildmat.2017.01.076
  • Çiftçi, M. (2020). Nano boyutlu taneciklerin kullanımıyla yüksek hacimde yüksek fırın cürufu içeren katkılı çimento tasarımı. Yüksek Lisans Tezi, Batman Üniversitesi Fen Bilimleri Enstitüsü, Batman.
  • Bentz, D. P., Ardani, A., Barrett, T., Jones, S. Z., Lootens, D., Peltz, M. A., ... and Weiss, W. J. (2015). Multi-scale investigation of the performance of limestone in concrete. Construction and Building Materials, 75, 1-10. https://doi.org/10.1016/j.conbuildmat.2014.10.042
  • Demirboğa, R., Türkmen, İ. and Karakoc, M. B. (2004). Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete. Cement and concrete research, 34(12), 2329-2336. https://doi.org/10.1016/j.cemconres.2004.04.017
  • Demirhan, S. (2017). Nano malzemeler ile modifiye edilmiş yüksek performansli hibrid lif donatili betonlar, Doktora Tezi, Gazi Üniversitesi Fen Bilimleri Enstitüsü, Ankara.
  • Demirhan, S., Turk, K. and Ulugerger, K. (2019). Fresh and hardened properties of self-consolidating Portland limestone cement mortars: Effect of high-volume limestone powder replaced by cement. Construction and Building, Materials, 196, 115-125. https://doi.org/10.1016/j.conbuildmat.2018.11.111
  • Demirhan, S. (2020). Combined effects of nano-sized calcite and fly ash on hydration and microstructural properties of mortars. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(6), 1051-1067. https://doi.org/10.35414/akufemubid.825862
  • Duran-Herrera, A., Juárez, C. A., Valdez, P. and Bentz, D. P. (2011). Evaluation of sustainable high-volume fly ash concretes. Cement and Concrete Composites, 33(1), 39-45. https://doi.org/10.1016/j.cemconcomp.2010.09.020
  • Elchalakani, M., Aly, T. and Abu-Aisheh, E. (2014). Sustainable concrete with high volume GGBFS to build Masdar City in the UAE. Case Studies in Construction Materials, 1, 10-24. https://doi.org/10.1016/j.cscm.2013.11.001
  • Flower, D. J. and Sanjayan, J. G. (2007). Greenhouse gas emissions due to concrete manufacture. The international Journal of life cycle assessment, 12(5), 282. https://doi.org/10.1065/lca2007.05.327
  • Gowda, R., Narendra, H., Rangappa, D. and Prabhakar, R. (2017). Effect of nano-alumina on workability, compressive strength and residual strength at elevated temperature of cement mortar. Materials Today: Proceedings, 4(11), 12152-12156. https://doi.org/10.1016/j.matpr.2017.09.144
  • Hooton, R. D. (2000). Canadian use of ground granulated blast-furnace slag as a supplementary cementing material for enhanced performance of concrete. Canadian Journal of Civil Engineering, 27(4), 754-760. https://doi.org/10.1139/l00-014
  • Kong, D. L. and Sanjayan, J. G. (2008). Damage behavior of geopolymer composites exposed to elevated temperatures. Cement and Concrete Composites, 30(10), 986-991. https://doi.org/10.1016/j.cemconcomp.2008.08.001
  • Kumar, S., Kumar, R., Bandopadhyay, A., Alex, T. C., Kumar, B. R., Das, S. K. and Mehrotra, S. P. (2008). Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of portland slag cement. Cement and Concrete Composites, 30(8), 679-685. https://doi.org/10.1016/j.cemconcomp.2008.05.005
  • Li, H., Xiao, H. G., Yuan, J. and Ou, J. (2004). Microstructure of cement mortar with nano-particles. Composites part B: Engineering, 35(2), 185-189. https://doi.org/10.1016/S1359-8368(03)00052-0
  • Li, J., Tharakan, P., Macdonald, D. and Liang, X. (2013). Technological, economic and financial prospects of carbon dioxide capture in the cement industry. Energy Policy, 61, 1377-1387. https://doi.org/10.1016/j.enpol.2013.05.082
  • Li, Q. L., Chen, M. Z., Liu, F., Wu, S. P. and Sang, Y. (2015). Effect of superfine blast furnace slag powder on properties of cement-based materials. Materials Research Innovations, 19(sup1), S1-168. https://doi.org/10.1179/1432891715Z.0000000001397
  • Liu, C., He, X., Deng, X., Wu, Y., Zheng, Z., Liu, J. and Hui, D. (2020). Application of nanomaterials in ultra-high-performance concrete: A review. Nanotechnology Reviews, 9(1), 1427-1444. https://doi.org/10.1515/ntrev-2020-0107
  • Nazari, A. and Riahi, S. (2011). Improvement compressive strength of concrete in different curing media by Al2O3 nanoparticles. Materials Science and Engineering: A, 528(3), 1183-1191. https://doi.org/10.1016/j.msea.2010.09.098
  • Ng, D. S., Paul, S. C., Anggraini, V., Kong, S. Y., Qureshi, T. S., Rodriguez, C. R. and Šavija, B. (2020). Influence of SiO2, TiO2 and Fe2O3 nanoparticles on the properties of fly ash blended cement mortars. Construction and Building Materials, 258, 119627. https://doi.org/10.1016/j.conbuildmat.2020.119627
  • Norhasri, M. M., Hamidah, M. S. and Fadzil, A. M. (2017). Applications of using nano material in concrete: A review. Construction and Building Materials, 133, 91-97. https://doi.org/10.1016/j.conbuildmat.2016.12.005
  • Orakzai, M. A. (2021). Hybrid effect of nano-alumina and nano-titanium dioxide on Mechanical properties of concrete. Case Studies in Construction Materials, 14, e00483. https://doi.org/10.1016/j.cscm.2020.e00483
  • Oner, A. and Akyuz, S. (2007). An experimental study on optimum usage of GGBS for the compressive strength of concrete. Cement and Concrete Composites, 29(6), 505-514. https://doi.org/10.1016/j.cemconcomp.2007.01.001
  • Özbay, E., Erdemir, M. and Durmuş, H. İ. (2016). Utilization and efficiency of ground granulated blast furnace slag on concrete properties–A review. Construction and Building Materials, 105, 423-434. https://doi.org/10.1016/j.conbuildmat.2015.12.153
  • Polat, R., Demirboğa, R. and Karagöl, F. (2019). Mechanical and physical behavior of cement paste and mortar incorporating nano‐CaO. Structural Concrete, 20(1), 361-370. https://doi.org/10.1002/suco.201800132
  • Poudyal, L., Adhikari, K. and Won, M. (2021). Mechanical and durability properties of Portland limestone cement (PLC) incorporated with nano calcium carbonate (CaCO3). Materials, 14(4), 905. https://doi.org/10.3390/ma14040905
  • Qing, Y., Zenan, Z., Deyu, K. and Rongshen, C. (2007). Influence of nano-SiO2 addition on properties of hardened cement paste as compared with silica fume. Construction and building materials, 21(3), 539-545. https://doi.org/10.1016/j.conbuildmat.2005.09.001
  • Rao, G. M. and Rao, T. G. (2015). Final setting time and compressive strength of fly ash and GGBS-based geopolymer paste and mortar. Arabian Journal for Science and Engineering, 40(11), 3067-3074. https://doi.org/10.1007/s13369-015-1757-z
  • Rashad, A. M. (2014). A comprehensive overview about the influence of different admixtures and additives on the properties of alkali-activated fly ash. Materials and Design, 53, 1005-1025. https://doi.org/10.1016/j.matdes.2013.07.074
  • Rashad, A. M. (2015). An investigation of high-volume fly ash concrete blended with slag subjected to elevated temperatures. Journal of Cleaner Production, 93, 47-55. https://doi.org/10.1016/j.jclepro.2015.01.031
  • Rowles, M. and O'connor, B. (2003). Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite. Journal of Materials Chemistry, 13(5), 1161-1165. https://doi.org/10.1039/B212629J
  • Şahmaran, M., Keskin, S. B., Ozerkan, G. and Yaman, I. O. (2008). Self-healing of mechanically loaded self-consolidating concretes with high volumes of fly ash. Cement and Concrete Composites, 30(10), 872-879. https://doi.org/10.1016/j.cemconcomp.2008.07.001
  • Schmidt, M., Amrhein, K., Braun, T., Glotzbach, C., Kamaruddin, S. and Tänzer, R. (2013). Nanotechnological improvement of structural materials–impact on material performance and structural design. Cement and Concrete Composites, 36, 3-7. https://doi.org/10.1016/j.cemconcomp.2012.11.003
  • Shaikh, F. U. A. and Hosan, A. (2019). Effect of nano silica on compressive strength and microstructures of high volume blast furnace slag and high volume blast furnace slag-fly ash blended pastes. Sustainable Materials and Technologies, 20, e00111. https://doi.org/10.1016/j.susmat.2019.e00111
  • Shaikh, F. U. and Supit, S. W. (2014). Mechanical and durability properties of high volume fly ash (HVFA) concrete containing calcium carbonate (CaCO3) nanoparticles. Construction and building materials, 70, 309-321. https://doi.org/10.1016/j.conbuildmat.2014.07.099
  • Sobolev, K., Flores, I., Torres-Martinez, L. M., Valdez, P. L., Zarazua, E. and Cuellar, E. L. (2009). Engineering of SiO 2 nanoparticles for optimal performance in nano cement-based materials. In Nanotechnology in construction 3 (pp. 139-148). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00980-8_18
  • Sumesh, M., Alengaram, U. J., Jumaat, M. Z., Mo, K. H. and Alnahhal, M. F. (2017). Incorporation of nanomaterials in cement composite and geopolymer based paste and mortar–A review. Construction and Building Materials, 148, 62-84. https://doi.org/10.1016/j.conbuildmat.2017.04.206
  • Sun, J., Cao, X., Xu, Z., Yu, Z., Zhang, Y., Hou, G. and Shen, X. (2020). Contribution of core/shell TiO2@ SiO2 nanoparticles to the hydration of Portland cement. Construction and Building Materials, 233, 117127. https://doi.org/10.1016/j.conbuildmat.2019.117127
  • Sato, T. and Diallo, F. (2010). Seeding effect of nano-CaCO3 on the hydration of tricalcium silicate. Transportation Research Record, 2141(1), 61-67. https://doi.org/10.3141/2141-11
  • TS EN 196-1, (2016). Çimento deney metotları-Bölüm 1: Dayanım tayini. Türk Standartları Enstitüsü.
  • TS EN 196-3, (2017). Çimento deney yöntemleri-Bölüm 3: Priz süreleri ve genleşme tayini.
  • TS EN 197-1, (2012). Çimento-Bölüm 1: Genel çimentolar- Bileşim, özellikler ve uygunluk kriterleri.
  • Wainwright, P. J. and Rey, N. (2000). The influence of ground granulated blastfurnace slag (GGBS) additions and time delay on the bleeding of concrete. Cement and Concrete Composites, 22(4), 253-257. https://doi.org/10.1016/S0958-9465(00)00024-X
  • Wang, D., Shi, C., Farzadnia, N., Shi, Z., Jia, H. and Ou, Z. (2018). A review on use of limestone powder in cement-based materials: Mechanism, hydration and microstructures. Construction and Building Materials, 181, 659-672. https://doi.org/10.1016/j.conbuildmat.2018.06.075
  • Wu, Q., Miao, W. S., Zhang, Y. D., Gao, H. J. and Hui, D. (2020). Mechanical properties of nanomaterials: A review. Nanotechnology Reviews, 9(1), 259-273. https://doi.org/10.1515/ntrev-2020-0021
  • Yalçınkaya, Ç. and Yazıcı, H. (2017). Effects of ambient temperature and relative humidity on early-age shrinkage of UHPC with high-volume mineral admixtures. Construction and Building Materials, 144, 252-259. https://doi.org/10.1016/j.conbuildmat.2017.03.198
  • Yang, H., Che, Y. and Leng, F. (2018). High volume fly ash mortar containing nano-calcium carbonate as a sustainable cementitious material: microstructure and strength development. Scientific reports, 8(1), 1-11. https://doi.org/10.1038/s41598-018-34851-4
  • Zaitri, R., Bederina, M., Bouziani, T., Makhloufi, Z. and Hadjoudja, M. (2014). Development of high performances concrete based on the addition of grinded dune sand and limestone rock using the mixture design modelling approach. Construction and Building Materials, 60, 8-16. https://doi.org/10.1016/j.conbuildmat.2014.02.062
  • Zhao, Y., Qiu, J., Xing, J. and Sun, X. (2020-a). Chemical activation of binary slag cement with low carbon footprint. Journal of Cleaner Production, 267, 121455. https://doi.org/10.1016/j.jclepro.2020.121455
  • Zhao, Z., Qi, T., Zhou, W., Hui, D., Xiao, C., Qi, J. and Zhao, Z. (2020-b). A review on the properties, reinforcing effects, and commercialization of nanomaterials for cement-based materials. Nanotechnology Reviews, 9(1), 303-322. https://doi.org/10.1515/ntrev-2020-0023
  • Zhuang, S. and Wang, Q. (2021). Inhibition mechanisms of steel slag on the early-age hydration of cement. Cement and Concrete Research, 140, 106283. https://doi.org/10.1016/j.cemconres.2020.106283
There are 61 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Mem Çiftçi 0000-0002-0060-2621

Serhat Demirhan 0000-0001-5448-9495

Publication Date April 15, 2021
Submission Date January 25, 2021
Acceptance Date March 9, 2021
Published in Issue Year 2021 Volume: 11 Issue: 2

Cite

APA Çiftçi, M., & Demirhan, S. (2021). Effect of nano type and slag replacement level on cement mortars. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(2), 482-496. https://doi.org/10.17714/gumusfenbil.867858