Research Article
BibTex RIS Cite

Kum-öğütülmüş araç lastiği karışımlarının kayma mukavemeti parametreleri

Year 2021, Volume: 11 Issue: 3, 713 - 720, 15.07.2021
https://doi.org/10.17714/gumusfenbil.865490

Abstract

Kullanılmış lastikler, özellikle kentsel alanlarda istenmeyen ve miktarı her yıl artan atıklardır. İnsan toplumlarının gelişmesi ve artan otomobil kullanımıyla birlikte dünya genelinde her yıl milyonlarca kullanılmış lastik, tüketim döngüsünden çıkarak atık olarak toplanmaktadır. Oysaki bu atıkların, temel yapı malzemelerinden biri olan zeminle karıştırılarak zeminin mekanik özelliklerini iyileştirmek için kullanılması mümkündür. Bu makalede, yüksek sürtünmeli bir kumun kayma mukavemeti parametrelerine, öğütülmüş araç lastiği eklenmesinin etkisi incelenmiştir. Kum- öğütülmüş araç lastiği karışımı için ağırlıkça (100: 0, 97.5: 2.5, 95: 5, 92.5: 7.5 ve 90:10) oranları kullanılmıştır. Katkısız kumun ve kum-öğütülmüş araç lastiği karışımlarının maksimum kuru birim hacim ağırlıkları (MDD) ve optimum su muhtevası (OMC) değerleri standart Proktor deneyi ile belirlenmiştir. Proktor sıkılığında hazırlanan numuneler, üç farklı eksenel gerilme altında kesme kutusu deneyine tabi tutulmuştur. Sonuçlar, içsel sürtünme açısının öğütülmüş araç lastiği yüzdesi %5'e ulaştığında %13.8 artış gösterdiğini ve kohezyonun ise öğütülmüş araç lastiği yüzdesi % 5'e ulaştığında %66.4 azaldığını göstermiştir. Bu noktadan sonra içsel sürtünme açışı azalmış ve kohezyon ise düşük bir oranda artmıştır.

References

  • Ahmed, I. (1992). Laboratory study on properties of rubber-soils. fınal report. Department of Civil Engineering, Purdue Univiversity, Indiana, USA, 47907.
  • Ahmed, I., Lovell, C. (1993). Rubber soils as lightweight geomaterials. Transportation research record, 1422, 61-70.
  • Akbulut, S., Arasan, S. and Kalkan, E. (2007). Modification of clayey soils using scrap tire rubber and synthetic fibers. Applied Clay Science, 38(1-2), 23-32. https://doi.org/10.1016/j.clay.2007.02.001
  • Annadurai, R. and KannanRajkumar, P. (2014). Study on effect of crumb rubber on cehavior of soil. International Journal of Geomatics and Geosciences, 4 (3), 579-584.
  • Anvari, S.M., Shooshpasha, I. and Kutanaei, S.S. (2017). Effect of granulated rubber on shear strength of fine-grained sand. Journal of Rock Mechanics and Geotechnical Engineering, 9 (5), 936-944. https://doi.org/10.1016/j.jrmge.2017.03.008
  • ASTM C1444-00. (2001). Standard method for measuring the angle of repose of free-flowing mold powders. ASTM International, West Conshohocken, PA, USA.
  • ASTM D3080. (2011). Standard test method for direct shear test of soils under consolidated drained conditions. ASTM International, West Conshohocken, PA, USA.
  • ASTM D854. (2014). Standard test methods for specific gravity of soil solids by water pycnometer. ASTM International, West Conshohocken, PA, USA.
  • ASTM D4254-91. (2006). Standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM International,West Conshohocken, PA, USA.
  • ASTM D698. (2007). Standard test methods for laboratory compaction characteristics of soil. ASTM International, West Conshohocken, PA, USA.
  • ASTM D422-63. (2007). Standard test method for particle-size analysis of soils". ASTM International, West Conshohocken, PA, USA.
  • Awlla, H.A., Taher, N.R. and Mawlood, Y.I. (2020). Effect of fixed-base and soil structure interaction on the dynamic responses of steel structures. International Journal of Emerging Trends in Engineering Research, 8(9), 6298- 6305. https://doi.org/10.30534/ijeter/2020/223892020
  • Boominathan, A., Banerjee, S. and Dhanya, J. (2015). Performance of soil-rubber tyre scrap mixture as seismic base isolators for foundations, 6th International Confernce on Earthquake Geotechnical Engineering, 1-4.
  • Cabalar, A. F. (2011). Direct shear tests on waste tires–sand mixtures. Geotechnical and Geological Engineering, 29(4), 411-418. https://doi 10.1007/s10706-010-9386-5
  • Cabalar, A.F., Karabash, Z. and Mustafa, W.S. (2014). Stabilising a clay using tyre buffings and lime. Road materials and pavement design, 15 (4), 872-891. http://dx.doi.org/10.1080/14680629.2014.939697
  • Çelik, O. N. (1996). The engineering properties and fatigue behaviour of asphaltic concrete made with waste shredded tyre rubber modified binders (Doctoral dissertation, University of Leeds).
  • Chenari, R.J., Poursalimi, N. and Sosahab, J.S. (2017). Dynamic properties of sand-tire crumb mixtures with large cyclic direct shear apparatus. Electronic Journal Geotechnical Engineering, 22, 5085-5106. https://doi.org/10.1080/14680629.2014.939697
  • Chesner, W.H., Collins, R.J., MacKay, M.H. and Emery, J. (2002.) User guidelines for waste and by-product materials in pavement construction. (No. FHWA-RD-97-148, Guideline Manual, Rept No. 480017). Recycled Materials Resource Center.
  • Edincliler, A., Cabalar, A. F., Cagatay, A. and Cevik, A. (2010). Triaxial compression behavior of sand and tire wastes using neural networks. Neural Computing and Applications, 21(3), 441-452. https://doi.org/10.1007/s00521-010-0430-4
  • Edincliler, A. and Toksoy, Y. (2017). Effects of ground motion characteristics on the seismic performance of retaining walls with tire waste cushion, 16th World Confernce on Earthquake Engineering, 16WCEE.
  • Edincliler, A., Cabalar, A. F. and Cevik, A. (2013). Modelling dynamic behaviour of sand–waste tires mixtures using Neural Networks and Neuro-Fuzzy. European journal of environmental and civil engineering, 17(8), 720-741. https://doi.org/10.1080/19648189.2013.814552
  • Edincliler, A., Cabalar, A. F., Cevik, A. and Isik, H. (2018). New formulations for dynamic behavior of sand-waste tire mixtures in a small range of strain amplitudes. Periodica Polytechnica Civil Engineering, 62(1), 92-101. https://doi.org/10.3311/PPci.8698
  • Ghazavi, M., Ghaffari, J. and Farshadfar, A. (2011). Experimental determination of waste tire chip-sand-geogrid interface parameters using large direct shear tests, 5th Symposium on Advances in Science and Technology.
  • Lee, J., Salgado, R., Bernal, A. and Lovell, C. (1999). Shredded tires and rubber-sand as lightweight backfill. Journal of geotechnical and Geoenvironmental engineering, 125 (2), 132-141. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:2(132)
  • Li, W., Kwok, C.Y. and Senetakis, K. (2020). Effects of inclusion of granulated rubber tires on the mechanical behaviour of a compressive sand. Canadian Geotechnical Journal, 57 (5), 763-769. https://doi.org/10.1139/cgj-2019-0112
  • Marto, A., Latifi, N., Moradi, R., Oghabi, M. and Zolfeghari, S.Y. (2013). Shear properties of sand-tire chips mixtures. Electronic Journal of Geotechnical Engineering, 18 (2), 325-334.
  • Naval, S., Kumar, A. and Bansal, S. (2013). Triaxial tests on waste tire rubber fiber mixed granular soil. Electronic Journal of Geotechnical Engineering, 18, 1623-1641.
  • Rahgozar, M. and Saberian, M. (2016). Geotechnical properties of peat soil stabilised with shredded waste tyre chips. Mires & Peat, 18, 1–12. https://doi: 10.19189/MaP.2015.OMB.205
  • Rao, G.V. and Dutta, R. (2006). Compressibility and strength behaviour of sand–tyre chip mixtures. Geotechnical and Geological Engineering, 24 (3), 711-724. https://doi: 10.1007/s10706-004-4006-x
  • Rouhanifar, S., Afrazi, M., Fakhimi, A. and Yazdani, M. (2020). Strength and deformation behaviour of sand-rubber mixture. International Journal of Geotechnical Engineering, 1-15. https://doi.org/10.1080/19386362.2020.1812193
  • Tiwari, S.K., Sharma, J.P. and Yadav, J.S. (2017). Geotechnical properties of dune sand-waste tires. Composite Materials Today: Proceedings, 4 (9), 9851-9855. https://doi.org/10.1016/j.matpr.2017.06.280
  • Tsang, H. H., Lam, N.T., Yaghmaei-Sabegh, S., Sheikh, M.N. and Indraratna, B. (2010). Geotechnical seismic isolation by scrap tire-soil mixtures. Proceedings of the 5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, California, U.S., 1-9.
  • Tweedie, J.J., Humphrey, D.N., Sandford, T.C. and Consortium, N.E.T. (1998). Tire chips as lightweight backfill for retaining walls--phase II. New England Transportation Consortium.
  • Valdes, J. R. and Evans, T. M. (2008). Sand–rubber mixtures: experiments and numerical simulations. Canadian Geotechnical Journal, 45(4), 588-595. https://doi.org/10.1139/T08-002
  • Youwai, S. and Bergado, D.T. (2003). Strength and deformation characteristics of shredded rubber tire sand mixtures. Canadian Geotechnical J., 40(2), 254-264. https://doi.org/10.1139/t02-104

Shear strength parameters of sand-tire chips mixtures

Year 2021, Volume: 11 Issue: 3, 713 - 720, 15.07.2021
https://doi.org/10.17714/gumusfenbil.865490

Abstract

Used tires are unwanted wastes especially in urban areas and their extent is growing every year. With the development of human societies and the increasing use of automobiles, every year millions of used tires are collected as garbage around the world and leave the consumption cycle. However, they can be used by mixing with soil, one of the basic building materials, to improve their mechanical properties. This article discusses the effect of adding tire chips on the shear strength properties of high-friction sand. Different mixing ratios of the sand-tire chips mixture by weight (100: 0, 97.5: 2.5, 95: 5, 92.5: 7.5 and 90:10) were used. The Maximum Dry Density (MDD) and Optimum Moisture Content (OMC) of sand and different sand-tire chip mixtures were determined by the standard Proctor test. Samples were prepared under OMC and MDD conditions and direct shear box test was performed on sand and sand-tire chip mixtures under three different axial stresses. The results showed that when the percentage of tire chips reaches 5%, the internal friction angle was increased by 13.8% and cohesion was decreased by 66.4%. After this point internal friction angle was decreased and cohesion increased slightly.

References

  • Ahmed, I. (1992). Laboratory study on properties of rubber-soils. fınal report. Department of Civil Engineering, Purdue Univiversity, Indiana, USA, 47907.
  • Ahmed, I., Lovell, C. (1993). Rubber soils as lightweight geomaterials. Transportation research record, 1422, 61-70.
  • Akbulut, S., Arasan, S. and Kalkan, E. (2007). Modification of clayey soils using scrap tire rubber and synthetic fibers. Applied Clay Science, 38(1-2), 23-32. https://doi.org/10.1016/j.clay.2007.02.001
  • Annadurai, R. and KannanRajkumar, P. (2014). Study on effect of crumb rubber on cehavior of soil. International Journal of Geomatics and Geosciences, 4 (3), 579-584.
  • Anvari, S.M., Shooshpasha, I. and Kutanaei, S.S. (2017). Effect of granulated rubber on shear strength of fine-grained sand. Journal of Rock Mechanics and Geotechnical Engineering, 9 (5), 936-944. https://doi.org/10.1016/j.jrmge.2017.03.008
  • ASTM C1444-00. (2001). Standard method for measuring the angle of repose of free-flowing mold powders. ASTM International, West Conshohocken, PA, USA.
  • ASTM D3080. (2011). Standard test method for direct shear test of soils under consolidated drained conditions. ASTM International, West Conshohocken, PA, USA.
  • ASTM D854. (2014). Standard test methods for specific gravity of soil solids by water pycnometer. ASTM International, West Conshohocken, PA, USA.
  • ASTM D4254-91. (2006). Standard test methods for minimum index density and unit weight of soils and calculation of relative density. ASTM International,West Conshohocken, PA, USA.
  • ASTM D698. (2007). Standard test methods for laboratory compaction characteristics of soil. ASTM International, West Conshohocken, PA, USA.
  • ASTM D422-63. (2007). Standard test method for particle-size analysis of soils". ASTM International, West Conshohocken, PA, USA.
  • Awlla, H.A., Taher, N.R. and Mawlood, Y.I. (2020). Effect of fixed-base and soil structure interaction on the dynamic responses of steel structures. International Journal of Emerging Trends in Engineering Research, 8(9), 6298- 6305. https://doi.org/10.30534/ijeter/2020/223892020
  • Boominathan, A., Banerjee, S. and Dhanya, J. (2015). Performance of soil-rubber tyre scrap mixture as seismic base isolators for foundations, 6th International Confernce on Earthquake Geotechnical Engineering, 1-4.
  • Cabalar, A. F. (2011). Direct shear tests on waste tires–sand mixtures. Geotechnical and Geological Engineering, 29(4), 411-418. https://doi 10.1007/s10706-010-9386-5
  • Cabalar, A.F., Karabash, Z. and Mustafa, W.S. (2014). Stabilising a clay using tyre buffings and lime. Road materials and pavement design, 15 (4), 872-891. http://dx.doi.org/10.1080/14680629.2014.939697
  • Çelik, O. N. (1996). The engineering properties and fatigue behaviour of asphaltic concrete made with waste shredded tyre rubber modified binders (Doctoral dissertation, University of Leeds).
  • Chenari, R.J., Poursalimi, N. and Sosahab, J.S. (2017). Dynamic properties of sand-tire crumb mixtures with large cyclic direct shear apparatus. Electronic Journal Geotechnical Engineering, 22, 5085-5106. https://doi.org/10.1080/14680629.2014.939697
  • Chesner, W.H., Collins, R.J., MacKay, M.H. and Emery, J. (2002.) User guidelines for waste and by-product materials in pavement construction. (No. FHWA-RD-97-148, Guideline Manual, Rept No. 480017). Recycled Materials Resource Center.
  • Edincliler, A., Cabalar, A. F., Cagatay, A. and Cevik, A. (2010). Triaxial compression behavior of sand and tire wastes using neural networks. Neural Computing and Applications, 21(3), 441-452. https://doi.org/10.1007/s00521-010-0430-4
  • Edincliler, A. and Toksoy, Y. (2017). Effects of ground motion characteristics on the seismic performance of retaining walls with tire waste cushion, 16th World Confernce on Earthquake Engineering, 16WCEE.
  • Edincliler, A., Cabalar, A. F. and Cevik, A. (2013). Modelling dynamic behaviour of sand–waste tires mixtures using Neural Networks and Neuro-Fuzzy. European journal of environmental and civil engineering, 17(8), 720-741. https://doi.org/10.1080/19648189.2013.814552
  • Edincliler, A., Cabalar, A. F., Cevik, A. and Isik, H. (2018). New formulations for dynamic behavior of sand-waste tire mixtures in a small range of strain amplitudes. Periodica Polytechnica Civil Engineering, 62(1), 92-101. https://doi.org/10.3311/PPci.8698
  • Ghazavi, M., Ghaffari, J. and Farshadfar, A. (2011). Experimental determination of waste tire chip-sand-geogrid interface parameters using large direct shear tests, 5th Symposium on Advances in Science and Technology.
  • Lee, J., Salgado, R., Bernal, A. and Lovell, C. (1999). Shredded tires and rubber-sand as lightweight backfill. Journal of geotechnical and Geoenvironmental engineering, 125 (2), 132-141. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:2(132)
  • Li, W., Kwok, C.Y. and Senetakis, K. (2020). Effects of inclusion of granulated rubber tires on the mechanical behaviour of a compressive sand. Canadian Geotechnical Journal, 57 (5), 763-769. https://doi.org/10.1139/cgj-2019-0112
  • Marto, A., Latifi, N., Moradi, R., Oghabi, M. and Zolfeghari, S.Y. (2013). Shear properties of sand-tire chips mixtures. Electronic Journal of Geotechnical Engineering, 18 (2), 325-334.
  • Naval, S., Kumar, A. and Bansal, S. (2013). Triaxial tests on waste tire rubber fiber mixed granular soil. Electronic Journal of Geotechnical Engineering, 18, 1623-1641.
  • Rahgozar, M. and Saberian, M. (2016). Geotechnical properties of peat soil stabilised with shredded waste tyre chips. Mires & Peat, 18, 1–12. https://doi: 10.19189/MaP.2015.OMB.205
  • Rao, G.V. and Dutta, R. (2006). Compressibility and strength behaviour of sand–tyre chip mixtures. Geotechnical and Geological Engineering, 24 (3), 711-724. https://doi: 10.1007/s10706-004-4006-x
  • Rouhanifar, S., Afrazi, M., Fakhimi, A. and Yazdani, M. (2020). Strength and deformation behaviour of sand-rubber mixture. International Journal of Geotechnical Engineering, 1-15. https://doi.org/10.1080/19386362.2020.1812193
  • Tiwari, S.K., Sharma, J.P. and Yadav, J.S. (2017). Geotechnical properties of dune sand-waste tires. Composite Materials Today: Proceedings, 4 (9), 9851-9855. https://doi.org/10.1016/j.matpr.2017.06.280
  • Tsang, H. H., Lam, N.T., Yaghmaei-Sabegh, S., Sheikh, M.N. and Indraratna, B. (2010). Geotechnical seismic isolation by scrap tire-soil mixtures. Proceedings of the 5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, California, U.S., 1-9.
  • Tweedie, J.J., Humphrey, D.N., Sandford, T.C. and Consortium, N.E.T. (1998). Tire chips as lightweight backfill for retaining walls--phase II. New England Transportation Consortium.
  • Valdes, J. R. and Evans, T. M. (2008). Sand–rubber mixtures: experiments and numerical simulations. Canadian Geotechnical Journal, 45(4), 588-595. https://doi.org/10.1139/T08-002
  • Youwai, S. and Bergado, D.T. (2003). Strength and deformation characteristics of shredded rubber tire sand mixtures. Canadian Geotechnical J., 40(2), 254-264. https://doi.org/10.1139/t02-104
There are 35 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Hüseyin Suha Aksoy 0000-0003-0564-457X

Nichirvan Taher 0000-0002-1295-080X

Halmat Awlla This is me 0000-0002-0545-0962

Publication Date July 15, 2021
Submission Date January 20, 2021
Acceptance Date April 14, 2021
Published in Issue Year 2021 Volume: 11 Issue: 3

Cite

APA Aksoy, H. S., Taher, N., & Awlla, H. (2021). Shear strength parameters of sand-tire chips mixtures. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(3), 713-720. https://doi.org/10.17714/gumusfenbil.865490