Research Article
BibTex RIS Cite

Çörtlerin betonun alkali silika reaksiyonu üzerindeki etkisi

Year 2021, Volume: 11 Issue: 3, 704 - 712, 15.07.2021
https://doi.org/10.17714/gumusfenbil.882773

Abstract

Betonun durabilitesini etkileyen kimyasal reaksiyonlardan biri de alkali silika reaksiyonudur (ASR). Gümüşhane ilinde yer alan taş ocaklarının birçoğunda bol miktarda çörtler yer almaktadır. Bu çörtler delme patlatma yöntemiyle ana kayaçtan ayrılarak elde edilen ince ve kaba agregalarla birlikte beton bileşeni olarak kullanılmaktadır. Bu çalışmada; Gümüşhane ilinin 3 farklı bölgesinden alınan çörtler (Akçakale, Gümüşhane ve Besyo), Gümüşhane üniversitesinde yer alan beton laboratuvarına getirilmiştir. Daha sonra farklı bölgelerden alınan 3 farklı çört ve referans numunesi için beton karışım hesabı yapılmış ve bu karışım hesaplarına göre ASTM C 1260 hızlandırılmış harç çubuğu standardına göre beton örnekleri hazırlanmıştır. 3, 7, 14 ve 28 günlük kür süreleri için 3 adet hızlandırılmış harç çubuğu numunesi hazırlanmıştır. Her bir bölgenin çört karışımlarına ait harç numunelerinin 3, 7, 14 ve 28 gün sonundaki ASR ölçümleri gerçekleştirilmiştir. Sonuçlar; çört ile üretilen tüm numunelerin, referans numunesine göre daha yüksek boy değişimi değerine sahip olduğunu, kür süresine bağlı olarak boy değişim değerlerinin arttığını göstermiştir. 14 günlük boy uzama sonuçlarının ASTM C 1260’ta belirtilen % 0.1 zararsız agregalar için boy uzama limitini ve 28 günlük boy uzama sonuçlarının da % 0.2’den fazla boy uzaması değerlerini aştığı görülmüştür. Sonuç olarak; Akçakale, Gümüşhane ve Besyo çörtlerinin 14 ve 28 günlük kür süreleri göz önüne alındığında ASR açısından zararlı olduğu anlaşılmıştır.

References

  • Abd-Allah, A. M. A., Baghdady, A. R., & Dawood, Y. H. (2018). Adequacy of carbonate aggregates as an alternative for chert aggregates in concrete manufacture. Construction and Building Materials, 181, 94-105. doi:10.1016/j.conbuildmat.2018.06.019.
  • Adiguzel, D., Bascetin, A., & Baray, S., A., (2019). Determination of Optimal Aggregate Blending to Prevent Alkali-Silica Reaction Using the Mixture Design Method. Journal of Testing and Evaluation, 47(1), 20160441. doi:10.1520/jte20160441.
  • ASTM C 1260-14, (2014). Standard test method for potential alkali reactivity of aggregates (mortar-bar method), ASTM International, West Conshohocken, PA, 2014, www.astm.org.
  • Baingam, L., Nawa, T., Iwatsuki, E., & Awamura, T., (2015). ASR formation of reactive chert in conducting model experiments at highly alkaline and temperature conditions. Construction and Building Materials, 95, 820-831. doi:10.1016/j.conbuildmat.2015.07.179.
  • Baradan, B., (2004). Yapı malzemesi II, Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Yayınları, No:207, ss:222, İzmir.
  • Bektas, F., Topal, T., Goncuoglu, M. C., & Turanli, L., (2008). Evaluation of the alkali reactivity of cherts from Turkey. Construction and Building Materials, 22(6), 1183-1190. doi:10.1016/j.conbuildmat.2007.02.002.
  • Bektas, F., Turanli, L., Topal, T., & Goncuoglu, M., C., (2004). Alkali reactivity of mortars containing chert and incorporating moderate-calcium fly ash. Cement and Concrete Research, 34(12), 2209-2214. doi:10.1016/j.cemconres.2004.02.007.
  • Brantley, S., L., Kubicki, J., D., White, A., F., (2008). Kinetics of water–rock interaction, Springer, New York, 2008.
  • Charpin, L., & Ehrlacher, A., (2012). A computational linear elastic fracture mechanics-based model for alkali–silica reaction. Cement and Concrete Research, 42(4), 613-625. doi:10.1016/j.cemconres.2012.01.004.
  • Çelik, M. Y., & Şahbaz, A., (2017). Ilıca (Kütahya) Bazaltının Beton Agregası Olarak Kullanılabilirliğinin Araştırılması. Journal of Polytechnic, 887-898. doi:10.2339/politeknik.369061
  • Çörtler (2020, Ağustos 4), Silisli sedimanter kayaçlar (Çörtler) ve demirli sedimanter kayaçlar, Türkçe jeoloji bilgi sayfası, https://www.jeolojitr.com/2011/09/silisli-sedimanter-kayaclarcortler-ve_27.html, (04.08.2020)
  • Demir, İ., (2010). Alkali-silika reaksiyonu etkisine maruz aynioranda silis dumani ve uçucu kül içerenharçlarin mekanik özellikleri. Gazi Üniv. Müh. Mim. Fak. Der. , Cilt 25,( No 4, ), 749-758.
  • Demir, İ., & Arslan, M., (2013). The mechanical and microstructural properties of Li2SO4, LiNO3, Li2CO3 and LiBr added mortars exposed to alkali-silica reaction. Construction and Building Materials, 42, 64-77. doi:10.1016/j.conbuildmat.2012.12.059 Eker, C. S., Sipahi, F., & Kaygusuz, A., (2012). Trace and rare earth elements as indicators of provenance and depositional environments of Lias cherts in Gumushane, NE Turkey. Geochemistry, 72(2), 167-177. doi:10.1016/j.chemer.2011.11.004.
  • Folk, R.L., (1980). Petrology of sedimentary rocks. Hemphill, Austin, TX, 79.
  • Gao, X. X., Multon, S., Cyr, M., & Sellier, A., (2013). Alkali–silica reaction (ASR) expansion: Pessimum effect versus scale effect. Cement and Concrete Research, 44, 25-33. doi:10.1016/j.cemconres.2012.10.015. Gökçe, H. S., Şimşek, O., & Korkmaz, S., (2013). Reduction of alkali−silica reaction expansion of mortars by utilisation of pozzolans. Magazine of Concrete Research, 65(7), 441-447. doi:10.1680/macr.12.00118.
  • Gökçe, H. S., Üzüm, O., Hosseinnezhad, H., Hatungimana, D., & Ramyar, K., (2019). Optimising high lime fly ash content by means of silica fume incorporation to control alkali-silica reaction and drying shrinkage of mortars. Journal of Polytechnic. doi:10.2339/politeknik.444036.
  • Karakurt, C., & Topçu, İ. B., (2011). Effect of blended cements produced with natural zeolite and industrial by-products on alkali-silica reaction and sulfate resistance of concrete. Construction and Building Materials, 25(4), 1789-1795. doi:10.1016/j.conbuildmat.2010.11.087.
  • Lindgård, J., Andiç-Çakır, Ö., Fernandes, I., Rønning, T. F., & Thomas, M. D. A., (2012). Alkali–silica reactions (ASR): Literature review on parameters influencing laboratory performance testing. Cement and Concrete Research, 42(2), 223-243. doi:10.1016/j.cemconres.2011.10.004.
  • Moundoungou, I., Bulteel, D., Garcia-Diaz, E., Thiéry, V., Dégrugilliers, P., & Hammerschlag, J. G., (2014). Reduction of ASR expansion in concretes based on reactive chert aggregates: Effect of alkali neutralisation capacity. Construction and Building Materials, 54, 147-162. doi:10.1016/j.conbuildmat.2013.12.036.
  • Murray, R.W., (1994). Chemical criteria to identify the depositional environment of chert: general principles and applications. Sedimentary Geology, 90, 213–232.
  • Prezzi, M., Monteiro, P., J,. M., Sposito, G., (1997). The alkali –silica reaction: Part I. Use of the double-layer theory to explain the behavior of reaction-product gels, ACI Mater. J. 94 (1) (1997) 10– 17.
  • Rajabipour, F., Giannini, E., Dunant, C., Ideker, J. H., & Thomas, M. D. A., (2015). Alkali–silica reaction: Current understanding of the reaction mechanisms and the knowledge gaps. Cement and Concrete Research, 76, 130-146. doi:10.1016/j.cemconres.2015.05.024.
  • Stanton, T., (1940). Expansion of concrete through reaction between cement and aggregate, Proc. American Society Civil Engineering, 66–10 (1940) 1781–1811.
  • Yurtdas, I., Chen, D., Hu, D. W., & Shao, J. F., (2013). Influence of alkali silica reaction (ASR) on mechanical properties of mortar. Construction and Building Materials, 47, 165-174. doi:10.1016/j.conbuildmat.2013.04.046.

The effect of cherts on alkali silica reaction of concrete

Year 2021, Volume: 11 Issue: 3, 704 - 712, 15.07.2021
https://doi.org/10.17714/gumusfenbil.882773

Abstract

One of the most important chemical reactions affecting the durability of concrete is the alkali silica reaction (ASR). There are plenty of cherts in many of the quarries in Gümüşhane province. These cherts are used as concrete component together with fine and coarse aggregates obtained by separating from the bedrock by drilling and blasting method. In this study; The cherts (Akçakale, Gümüşhane ve Besyo) taken from 3 different regions of our province of Gümüşhane were brought to the concrete laboratory in our Gümüşhane University. Later, 3 different cherts and reference concrete mixtures taken from different regions were prepared and concrete samples were prepared according to ASTM C 1260 accelerated mortar bar standard. ASR measurements of the mortar samples belonging to the chert mixtures of each region at the end of 3, 7, 14 and 28 days were performed. The results are; it has shown that all samples produced with cherts have a higher length change value than the reference sample, and the length change values increase depending on the curing period. It is observed that 14-day lengthening results exceed the lengthening limit for 0.1 % hazardous aggregates specified in ASTM C 1260 and 28-day lengthening results exceeding the lengthening values of more than 0.2 %. As a result; It was understood that Akçakale, Gümüşhane and Besyo cherts were harmful to ASR considering the curing times of 14 and 28 days.

References

  • Abd-Allah, A. M. A., Baghdady, A. R., & Dawood, Y. H. (2018). Adequacy of carbonate aggregates as an alternative for chert aggregates in concrete manufacture. Construction and Building Materials, 181, 94-105. doi:10.1016/j.conbuildmat.2018.06.019.
  • Adiguzel, D., Bascetin, A., & Baray, S., A., (2019). Determination of Optimal Aggregate Blending to Prevent Alkali-Silica Reaction Using the Mixture Design Method. Journal of Testing and Evaluation, 47(1), 20160441. doi:10.1520/jte20160441.
  • ASTM C 1260-14, (2014). Standard test method for potential alkali reactivity of aggregates (mortar-bar method), ASTM International, West Conshohocken, PA, 2014, www.astm.org.
  • Baingam, L., Nawa, T., Iwatsuki, E., & Awamura, T., (2015). ASR formation of reactive chert in conducting model experiments at highly alkaline and temperature conditions. Construction and Building Materials, 95, 820-831. doi:10.1016/j.conbuildmat.2015.07.179.
  • Baradan, B., (2004). Yapı malzemesi II, Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Yayınları, No:207, ss:222, İzmir.
  • Bektas, F., Topal, T., Goncuoglu, M. C., & Turanli, L., (2008). Evaluation of the alkali reactivity of cherts from Turkey. Construction and Building Materials, 22(6), 1183-1190. doi:10.1016/j.conbuildmat.2007.02.002.
  • Bektas, F., Turanli, L., Topal, T., & Goncuoglu, M., C., (2004). Alkali reactivity of mortars containing chert and incorporating moderate-calcium fly ash. Cement and Concrete Research, 34(12), 2209-2214. doi:10.1016/j.cemconres.2004.02.007.
  • Brantley, S., L., Kubicki, J., D., White, A., F., (2008). Kinetics of water–rock interaction, Springer, New York, 2008.
  • Charpin, L., & Ehrlacher, A., (2012). A computational linear elastic fracture mechanics-based model for alkali–silica reaction. Cement and Concrete Research, 42(4), 613-625. doi:10.1016/j.cemconres.2012.01.004.
  • Çelik, M. Y., & Şahbaz, A., (2017). Ilıca (Kütahya) Bazaltının Beton Agregası Olarak Kullanılabilirliğinin Araştırılması. Journal of Polytechnic, 887-898. doi:10.2339/politeknik.369061
  • Çörtler (2020, Ağustos 4), Silisli sedimanter kayaçlar (Çörtler) ve demirli sedimanter kayaçlar, Türkçe jeoloji bilgi sayfası, https://www.jeolojitr.com/2011/09/silisli-sedimanter-kayaclarcortler-ve_27.html, (04.08.2020)
  • Demir, İ., (2010). Alkali-silika reaksiyonu etkisine maruz aynioranda silis dumani ve uçucu kül içerenharçlarin mekanik özellikleri. Gazi Üniv. Müh. Mim. Fak. Der. , Cilt 25,( No 4, ), 749-758.
  • Demir, İ., & Arslan, M., (2013). The mechanical and microstructural properties of Li2SO4, LiNO3, Li2CO3 and LiBr added mortars exposed to alkali-silica reaction. Construction and Building Materials, 42, 64-77. doi:10.1016/j.conbuildmat.2012.12.059 Eker, C. S., Sipahi, F., & Kaygusuz, A., (2012). Trace and rare earth elements as indicators of provenance and depositional environments of Lias cherts in Gumushane, NE Turkey. Geochemistry, 72(2), 167-177. doi:10.1016/j.chemer.2011.11.004.
  • Folk, R.L., (1980). Petrology of sedimentary rocks. Hemphill, Austin, TX, 79.
  • Gao, X. X., Multon, S., Cyr, M., & Sellier, A., (2013). Alkali–silica reaction (ASR) expansion: Pessimum effect versus scale effect. Cement and Concrete Research, 44, 25-33. doi:10.1016/j.cemconres.2012.10.015. Gökçe, H. S., Şimşek, O., & Korkmaz, S., (2013). Reduction of alkali−silica reaction expansion of mortars by utilisation of pozzolans. Magazine of Concrete Research, 65(7), 441-447. doi:10.1680/macr.12.00118.
  • Gökçe, H. S., Üzüm, O., Hosseinnezhad, H., Hatungimana, D., & Ramyar, K., (2019). Optimising high lime fly ash content by means of silica fume incorporation to control alkali-silica reaction and drying shrinkage of mortars. Journal of Polytechnic. doi:10.2339/politeknik.444036.
  • Karakurt, C., & Topçu, İ. B., (2011). Effect of blended cements produced with natural zeolite and industrial by-products on alkali-silica reaction and sulfate resistance of concrete. Construction and Building Materials, 25(4), 1789-1795. doi:10.1016/j.conbuildmat.2010.11.087.
  • Lindgård, J., Andiç-Çakır, Ö., Fernandes, I., Rønning, T. F., & Thomas, M. D. A., (2012). Alkali–silica reactions (ASR): Literature review on parameters influencing laboratory performance testing. Cement and Concrete Research, 42(2), 223-243. doi:10.1016/j.cemconres.2011.10.004.
  • Moundoungou, I., Bulteel, D., Garcia-Diaz, E., Thiéry, V., Dégrugilliers, P., & Hammerschlag, J. G., (2014). Reduction of ASR expansion in concretes based on reactive chert aggregates: Effect of alkali neutralisation capacity. Construction and Building Materials, 54, 147-162. doi:10.1016/j.conbuildmat.2013.12.036.
  • Murray, R.W., (1994). Chemical criteria to identify the depositional environment of chert: general principles and applications. Sedimentary Geology, 90, 213–232.
  • Prezzi, M., Monteiro, P., J,. M., Sposito, G., (1997). The alkali –silica reaction: Part I. Use of the double-layer theory to explain the behavior of reaction-product gels, ACI Mater. J. 94 (1) (1997) 10– 17.
  • Rajabipour, F., Giannini, E., Dunant, C., Ideker, J. H., & Thomas, M. D. A., (2015). Alkali–silica reaction: Current understanding of the reaction mechanisms and the knowledge gaps. Cement and Concrete Research, 76, 130-146. doi:10.1016/j.cemconres.2015.05.024.
  • Stanton, T., (1940). Expansion of concrete through reaction between cement and aggregate, Proc. American Society Civil Engineering, 66–10 (1940) 1781–1811.
  • Yurtdas, I., Chen, D., Hu, D. W., & Shao, J. F., (2013). Influence of alkali silica reaction (ASR) on mechanical properties of mortar. Construction and Building Materials, 47, 165-174. doi:10.1016/j.conbuildmat.2013.04.046.
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Hasan Eker 0000-0003-2644-4681

Demet Demir Şahin 0000-0003-0338-6562

Publication Date July 15, 2021
Submission Date February 18, 2021
Acceptance Date April 14, 2021
Published in Issue Year 2021 Volume: 11 Issue: 3

Cite

APA Eker, H., & Demir Şahin, D. (2021). Çörtlerin betonun alkali silika reaksiyonu üzerindeki etkisi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(3), 704-712. https://doi.org/10.17714/gumusfenbil.882773