Research Article
BibTex RIS Cite

Lactobacillus paracasei biyokatalizörü ile enantiyosaf (S)-1- (4-metoksifenil) etanol üretimi

Year 2021, Volume: 11 Issue: 4, 1177 - 1187, 15.10.2021
https://doi.org/10.17714/gumusfenbil.873782

Abstract

Bu çalışmada, 4-metoksiasetofenonun enantiyoseçici indirgenmesinde yedi biyokatalizörün indirgeme kapasitesi tam hücre biyokatalizör olarak araştırılmıştır. Lactobacillus paracasei BD28'in en iyi indirgeme kapasitesine sahip olduğu bulunmuştur. pH, inkübasyon süresi, çalkalama hızı ve sıcaklık gibi farklı parametrelerin enantiyomerik aşırılık ve dönüşüm üzerindeki etkileri araştırıldı. Tam hücre biyokatalizörü Lactobacillus paracasei BD28 kullanılarak, genel alerjik yanıt için tedavi fonksiyonuna sahip sikloalkil [b] indollerin sentezinde kullanılabilen (S)-1-(4-metoksifenil) etanol, gram ölçeğinde, yüksek verimli ve enantiyomerik olarak saf halde üretilmiştir. Gram ölçekli üretim gerçekleştirildi ve % 95 verimle optik olarak saf formda 9,69 g (S)-1-(4-metoksifenil) etanol üretildi. Bu, kimyasal işlemlere kıyasla (S)-1-(4-metoksifenil) etanol üretimi için ucuz, temiz ve çevre dostu bir işlemdir.

Thanks

Biyokatalizörleri temininden dolayı Dr. Enes Dertli’ye (Yıldız Teknik Üniversitesi) ve HPLC analizlerinden dolayı Bayburt Üniversitesi Merkezi Araştırma Laboratuvarına teşekkür ederiz.

References

  • Brondani, P. B., Guilmoto, N. M., Dudek, H. M., Fraaije, M. W., and Andrade, L. H. (2012). Chemoenzymatic approaches to obtain chiral-centered selenium compounds. Tetrahedron, 68(51), 10431-10436.
  • Contesini, F. J., Lopes, D. B., Macedo, G. A., da Graça Nascimento, M., and de Oliveira Carvalho, P. (2010). Aspergillus sp. lipase: potential biocatalyst for industrial use. Journal of Molecular Catalysis B: Enzymatic, 67(3-4), 163-171.
  • Cui, Y. H., Wei, P., Peng, F., Zong, M. H., and Lou, W. Y. (2018). Efficient biocatalytic stereoselective reduction of methyl acetoacetate catalyzed by whole cells of engineered E. coli. RSC advances, 8(18), 9970-9978.
  • Dertli, E., Mercan, E., Arıcı, M., Yılmaz, M. T., and Sağdıç, O. (2016). Characterisation of lactic acid bacteria from Turkish sourdough and determination of their exopolysaccharide (EPS) production characteristics. LWT-Food Science and Technology, 71, 116-124.
  • Drayer, D. E. (1986). Pharmacodynamic and pharmacokinetic differences between drug enantiomers in humans: an overview. Clinical Pharmacology & Therapeutics, 40(2), 125-133.
  • Gamenara, D., and de María, P. D. (2009). Candida spp. redox machineries: An ample biocatalytic platform for practical applications and academic insights. Biotechnology advances, 27(3), 278-285.
  • Gotor-Fernández, V., Brieva, R., and Gotor, V. (2006). Lipases: Useful biocatalysts for the preparation of pharmaceuticals. Journal of Molecular Catalysis B: Enzymatic, 40(3-4), 111-120.
  • Guo, J. L., Mu, X. Q., and Xu, Y. (2010). Integration of newly isolated biocatalyst and resin-based in situ product removal technique for the asymmetric synthesis of (R)-methyl mandelate. Bioprocess and biosystems engineering, 33(7), 797-804.
  • Hillier, M. C., Desrosiers, J. N., Marcoux, J. F., and Grabowski, E. J. (2004). Stereoselective Carbon− Carbon Bond Formation via the Mitsunobu Displacement of Chiral Secondary Benzylic Alcohols. Organic letters, 6(4), 573-576.
  • Hillier, M. C., Marcoux, J. F., Zhao, D., Grabowski, E. J., McKeown, A. E., and Tillyer, R. D. (2005). Stereoselective Formation of Carbon− Carbon Bonds via SN2-Displacement: Synthesis of Substituted Cycloalkyl [b] indoles. The Journal of organic chemistry, 70(21), 8385-8394.
  • Ishige, T., Honda, K., and Shimizu, S. (2005). Whole organism biocatalysis. Current opinion in chemical biology, 9(2), 174-180. Kafarski, P., and Lejczak, B. (2004). Application of bacteria and fungi as biocatalysts for the preparation of optically active hydroxyphosphonates. Journal of Molecular Catalysis B: Enzymatic, 29(1-6), 99-104.
  • Llona-Minguez, S., Ghassemian, A., and Helleday, T. (2015). Lysophosphatidic acid receptor (LPAR) modulators: the current pharmacological toolbox. Progress in lipid research, 58, 51-75.
  • Lou, W. Y., Wang, W., Li, R. F., and Zong, M. H. (2009). Efficient enantioselective reduction of 4′-methoxyacetophenone with immobilized Rhodotorula sp. AS2. 2241 cells in a hydrophilic ionic liquid-containing co-solvent system. Journal of biotechnology, 143(3), 190-197.
  • Luo, F., Lu, D., and Gong, Y. (2011). Enantioselective bioreduction of 2-fluoro-2-alken-1-ols mediated by Saccharomyces cerevisiae. Journal of Molecular Catalysis B: Enzymatic, 70(3-4), 101-107.
  • MacLellan, P., and Clayden, J. (2011). Enantioselective synthesis of tertiary thiols by intramolecular arylation of lithiated thiocarbamates. Chemical Communications, 47(12), 3395-3397.
  • Matsuda, T., Yamanaka, R., and Nakamura, K. (2009). Recent progress in biocatalysis for asymmetric oxidation and reduction. Tetrahedron: Asymmetry, 20(5), 513-557.
  • Murzin, D. Y., Mäki‐Arvela, P., Toukoniitty, E., and Salmi, T. (2005). Asymmetric heterogeneous catalysis: science and engineering. Catalysis Reviews, 47(2), 175-256.
  • Patel, R. N. (2002). Microbial/enzymatic synthesis of chiral intermediates for pharmaceuticals. Enzyme and microbial technology, 31(6), 804-826.
  • Pereira, R. D. S. (1998). The use of baker's yeast in the generation of asymmetric centers to produce chiral drugs and other compounds. Critical reviews in biotechnology, 18(1), 25-64.
  • Pu, W., Huizhen, S., Liming, S., Junyao, H., and Yaping, L. Ü. (2011). Asymmetric bioreduction of 3, 5-bis (trifluoromethyl) acetophenone to its corresponding alcohol by Candida tropicalis. Chinese Journal of Chemical Engineering, 19(6), 1028-1032.
  • Roy, A., Bhattacharyya, M. S., Kumar, L. R., Chawla, H. P. S., and Banerjee, U. C. (2003). Microbial reduction of 1-acetonapthone: a highly efficient process for multigram synthesis of S (−)-1-(1′-napthyl) ethanol. Enzyme and microbial technology, 33(5), 576-580.
  • Singh, A., Chisti, Y., and Banerjee, U. C. (2012). Stereoselective biocatalytic hydride transfer to substituted acetophenones by the yeast Metschnikowia koreensis. Process Biochemistry, 47(12), 2398-2404.
  • Świzdor, A., Janeczko, T., and Dmochowska-Gładysz, J. (2010). Didymosphaeria igniaria: a new microorganism useful for the enantioselective reduction of aryl-aliphatic ketones. Journal of Industrial Microbiology and Biotechnology, 37(11), 1121-1130.
  • Şahin, E. (2017). Debaryomyces hansenii as a new biocatalyst in the asymmetric reduction of substituted acetophenones. Biocatalysis and Biotransformation, 35(5), 363-371.
  • Wang, B., Zhu, B., Gong, J., Weng, J., Xia, F., and Liu, W. (2020). Resolution of racemic1-(4-methoxyphenyl) ethanol using immobilized lipase with high substrate tolerance. Biochemical Engineering Journal, 158, 107559.
  • Wang, W., Zong, M. H., and Lou, W. Y. (2009). Use of an ionic liquid to improve asymmetric reduction of 4′-methoxyacetophenone catalyzed by immobilized Rhodotorula sp. AS2. 2241 cells. Journal of Molecular Catalysis B: Enzymatic, 56(1), 70-76.
  • Wei, P., Liang, J., Cheng, J., Zong, M. H., and Lou, W. Y. (2016). Markedly improving asymmetric oxidation of 1-(4-methoxyphenyl) ethanol with Acetobacter sp. CCTCC M209061 cells by adding deep eutectic solvent in a two-phase system. Microbial cell factories, 15(1), 1-11.
  • Xie, Y., Xu, J. H., Lu, W. Y., and Lin, G. Q. (2009). Adzuki bean: a new resource of biocatalyst for asymmetric reduction of aromatic ketones with high stereoselectivity and substrate tolerance. Bioresource technology, 100(9), 2463-2468.
  • Xu, P., Cheng, J., Lou, W. Y., and Zong, M. H. (2015). Using deep eutectic solvents to improve the resolution of racemic 1-(4-methoxyphenyl) ethanol through Acetobacter sp. CCTCC M209061 cell-mediated asymmetric oxidation. RSC advances, 5(9), 6357-6364.
  • Zhimin, O., Ma, L., Niu, Y., and Cui, J. (2018). Preparation of (R)-(-)-mandelic acid by two-step biotransformation of ethyl benzoylformate. Biocatalysis and Biotransformation, 36(6), 409-416.
  • Zong, C., Zhang, X., Yang, F., Zhou, Y., Chen, N., Yang, Z., and Tang, Y. (2019). Biotransformation of a crizotinib intermediate using a mutant alcohol dehydrogenase of Lactobacillus kefir coupled with glucose dehydrogenase. Preparative Biochemistry and Biotechnology, 49(6), 578-583.

Production of enantiopure (S)-1-(4-methoxyphenyl)ethanol by Lactobacillus paracasei biocatalyst

Year 2021, Volume: 11 Issue: 4, 1177 - 1187, 15.10.2021
https://doi.org/10.17714/gumusfenbil.873782

Abstract

In this study, the reductive capacity of seven biocatalysts were investigated as whole-cell biocatalyst in the enantioselective reduction of 4-metoxyacetofhenone. Lactobacillus paracasei BD28 was found to have the best reductive capacity. Effects of different parameters such as pH, incubation time, agitation speed and temperature, on enantiomeric excess and conversion were investigated in a bioconversion. (S)-1-(4-methoxyphenyl) ethanol which, can be employed for the synthesis of cycloalkyl [b] indoles which have the treatment function for general allergic response, was produced in gram-scale, high yield and enantiomerically pure form using whole-cell biocatalyst of Lactobacillus paracasei BD28. The gram-scale production was carried out, and 9.69 g of (S)-1-(4-methoxyphenyl) ethanol in optically pure form was produced with 95 % yield. This is a cheap, clean and eco-friendly process for production of (S)-1-(4-methoxyphenyl) ethanol compared to chemical processes.

References

  • Brondani, P. B., Guilmoto, N. M., Dudek, H. M., Fraaije, M. W., and Andrade, L. H. (2012). Chemoenzymatic approaches to obtain chiral-centered selenium compounds. Tetrahedron, 68(51), 10431-10436.
  • Contesini, F. J., Lopes, D. B., Macedo, G. A., da Graça Nascimento, M., and de Oliveira Carvalho, P. (2010). Aspergillus sp. lipase: potential biocatalyst for industrial use. Journal of Molecular Catalysis B: Enzymatic, 67(3-4), 163-171.
  • Cui, Y. H., Wei, P., Peng, F., Zong, M. H., and Lou, W. Y. (2018). Efficient biocatalytic stereoselective reduction of methyl acetoacetate catalyzed by whole cells of engineered E. coli. RSC advances, 8(18), 9970-9978.
  • Dertli, E., Mercan, E., Arıcı, M., Yılmaz, M. T., and Sağdıç, O. (2016). Characterisation of lactic acid bacteria from Turkish sourdough and determination of their exopolysaccharide (EPS) production characteristics. LWT-Food Science and Technology, 71, 116-124.
  • Drayer, D. E. (1986). Pharmacodynamic and pharmacokinetic differences between drug enantiomers in humans: an overview. Clinical Pharmacology & Therapeutics, 40(2), 125-133.
  • Gamenara, D., and de María, P. D. (2009). Candida spp. redox machineries: An ample biocatalytic platform for practical applications and academic insights. Biotechnology advances, 27(3), 278-285.
  • Gotor-Fernández, V., Brieva, R., and Gotor, V. (2006). Lipases: Useful biocatalysts for the preparation of pharmaceuticals. Journal of Molecular Catalysis B: Enzymatic, 40(3-4), 111-120.
  • Guo, J. L., Mu, X. Q., and Xu, Y. (2010). Integration of newly isolated biocatalyst and resin-based in situ product removal technique for the asymmetric synthesis of (R)-methyl mandelate. Bioprocess and biosystems engineering, 33(7), 797-804.
  • Hillier, M. C., Desrosiers, J. N., Marcoux, J. F., and Grabowski, E. J. (2004). Stereoselective Carbon− Carbon Bond Formation via the Mitsunobu Displacement of Chiral Secondary Benzylic Alcohols. Organic letters, 6(4), 573-576.
  • Hillier, M. C., Marcoux, J. F., Zhao, D., Grabowski, E. J., McKeown, A. E., and Tillyer, R. D. (2005). Stereoselective Formation of Carbon− Carbon Bonds via SN2-Displacement: Synthesis of Substituted Cycloalkyl [b] indoles. The Journal of organic chemistry, 70(21), 8385-8394.
  • Ishige, T., Honda, K., and Shimizu, S. (2005). Whole organism biocatalysis. Current opinion in chemical biology, 9(2), 174-180. Kafarski, P., and Lejczak, B. (2004). Application of bacteria and fungi as biocatalysts for the preparation of optically active hydroxyphosphonates. Journal of Molecular Catalysis B: Enzymatic, 29(1-6), 99-104.
  • Llona-Minguez, S., Ghassemian, A., and Helleday, T. (2015). Lysophosphatidic acid receptor (LPAR) modulators: the current pharmacological toolbox. Progress in lipid research, 58, 51-75.
  • Lou, W. Y., Wang, W., Li, R. F., and Zong, M. H. (2009). Efficient enantioselective reduction of 4′-methoxyacetophenone with immobilized Rhodotorula sp. AS2. 2241 cells in a hydrophilic ionic liquid-containing co-solvent system. Journal of biotechnology, 143(3), 190-197.
  • Luo, F., Lu, D., and Gong, Y. (2011). Enantioselective bioreduction of 2-fluoro-2-alken-1-ols mediated by Saccharomyces cerevisiae. Journal of Molecular Catalysis B: Enzymatic, 70(3-4), 101-107.
  • MacLellan, P., and Clayden, J. (2011). Enantioselective synthesis of tertiary thiols by intramolecular arylation of lithiated thiocarbamates. Chemical Communications, 47(12), 3395-3397.
  • Matsuda, T., Yamanaka, R., and Nakamura, K. (2009). Recent progress in biocatalysis for asymmetric oxidation and reduction. Tetrahedron: Asymmetry, 20(5), 513-557.
  • Murzin, D. Y., Mäki‐Arvela, P., Toukoniitty, E., and Salmi, T. (2005). Asymmetric heterogeneous catalysis: science and engineering. Catalysis Reviews, 47(2), 175-256.
  • Patel, R. N. (2002). Microbial/enzymatic synthesis of chiral intermediates for pharmaceuticals. Enzyme and microbial technology, 31(6), 804-826.
  • Pereira, R. D. S. (1998). The use of baker's yeast in the generation of asymmetric centers to produce chiral drugs and other compounds. Critical reviews in biotechnology, 18(1), 25-64.
  • Pu, W., Huizhen, S., Liming, S., Junyao, H., and Yaping, L. Ü. (2011). Asymmetric bioreduction of 3, 5-bis (trifluoromethyl) acetophenone to its corresponding alcohol by Candida tropicalis. Chinese Journal of Chemical Engineering, 19(6), 1028-1032.
  • Roy, A., Bhattacharyya, M. S., Kumar, L. R., Chawla, H. P. S., and Banerjee, U. C. (2003). Microbial reduction of 1-acetonapthone: a highly efficient process for multigram synthesis of S (−)-1-(1′-napthyl) ethanol. Enzyme and microbial technology, 33(5), 576-580.
  • Singh, A., Chisti, Y., and Banerjee, U. C. (2012). Stereoselective biocatalytic hydride transfer to substituted acetophenones by the yeast Metschnikowia koreensis. Process Biochemistry, 47(12), 2398-2404.
  • Świzdor, A., Janeczko, T., and Dmochowska-Gładysz, J. (2010). Didymosphaeria igniaria: a new microorganism useful for the enantioselective reduction of aryl-aliphatic ketones. Journal of Industrial Microbiology and Biotechnology, 37(11), 1121-1130.
  • Şahin, E. (2017). Debaryomyces hansenii as a new biocatalyst in the asymmetric reduction of substituted acetophenones. Biocatalysis and Biotransformation, 35(5), 363-371.
  • Wang, B., Zhu, B., Gong, J., Weng, J., Xia, F., and Liu, W. (2020). Resolution of racemic1-(4-methoxyphenyl) ethanol using immobilized lipase with high substrate tolerance. Biochemical Engineering Journal, 158, 107559.
  • Wang, W., Zong, M. H., and Lou, W. Y. (2009). Use of an ionic liquid to improve asymmetric reduction of 4′-methoxyacetophenone catalyzed by immobilized Rhodotorula sp. AS2. 2241 cells. Journal of Molecular Catalysis B: Enzymatic, 56(1), 70-76.
  • Wei, P., Liang, J., Cheng, J., Zong, M. H., and Lou, W. Y. (2016). Markedly improving asymmetric oxidation of 1-(4-methoxyphenyl) ethanol with Acetobacter sp. CCTCC M209061 cells by adding deep eutectic solvent in a two-phase system. Microbial cell factories, 15(1), 1-11.
  • Xie, Y., Xu, J. H., Lu, W. Y., and Lin, G. Q. (2009). Adzuki bean: a new resource of biocatalyst for asymmetric reduction of aromatic ketones with high stereoselectivity and substrate tolerance. Bioresource technology, 100(9), 2463-2468.
  • Xu, P., Cheng, J., Lou, W. Y., and Zong, M. H. (2015). Using deep eutectic solvents to improve the resolution of racemic 1-(4-methoxyphenyl) ethanol through Acetobacter sp. CCTCC M209061 cell-mediated asymmetric oxidation. RSC advances, 5(9), 6357-6364.
  • Zhimin, O., Ma, L., Niu, Y., and Cui, J. (2018). Preparation of (R)-(-)-mandelic acid by two-step biotransformation of ethyl benzoylformate. Biocatalysis and Biotransformation, 36(6), 409-416.
  • Zong, C., Zhang, X., Yang, F., Zhou, Y., Chen, N., Yang, Z., and Tang, Y. (2019). Biotransformation of a crizotinib intermediate using a mutant alcohol dehydrogenase of Lactobacillus kefir coupled with glucose dehydrogenase. Preparative Biochemistry and Biotechnology, 49(6), 578-583.
There are 31 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Engin Şahin 0000-0002-3723-1705

Publication Date October 15, 2021
Submission Date February 3, 2021
Acceptance Date August 8, 2021
Published in Issue Year 2021 Volume: 11 Issue: 4

Cite

APA Şahin, E. (2021). Lactobacillus paracasei biyokatalizörü ile enantiyosaf (S)-1- (4-metoksifenil) etanol üretimi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(4), 1177-1187. https://doi.org/10.17714/gumusfenbil.873782