Research Article
BibTex RIS Cite

Petrographic and geochemichal characters of the Bitlis ignimbirite

Year 2021, Volume: 11 Issue: 4, 1093 - 1102, 15.10.2021
https://doi.org/10.17714/gumusfenbil.920804

Abstract

In this study were investigated mineralogical and geochemical properties and phase relations of Bitlis ignimbrites being product of Nemrut volcanism. The Bitlis ignimbirite have different colors and composition ratios. Its mineralogical composition is a pyroclastic rock sequence consisting of plagioclase, sanidine, anorthoclase, augite, olivine, biotite, hematite, quartz and ilmenite. The Bitlis ignimbrite is formed as a result of eruption of magma in trachyh-riolite composition formed in volcanic arcs, back-arc or intra-continental areas or contamination of magma during rising in intra-continental fracture. There are differences in component ratio, chemical composition and color between ignimbrite levels. This unit showed pre-caldera period and shows mainly pumice, rock fragments, oriented fiammes, features such as sepiolytic particles together with conversion to sanidine mineral indicate at least two phases and the devitrication partially causes color difference. Mineral alterations and high Ba/Sr (1.48-1.92), Ba/Ta (33.0-34.6), Th/La (0.24-0.25), Ba/La (11.2-15) ratios indicates metamorphism or crustal contamination post or during formation of ignimbrite. The geochemical features of the Bitlis ignimbrite partly show a small volume silicic volcanism. The discrepancy between three levels may be due to time interval between phase stages and magmatic processes or from the devitrification.

Project Number

Fübap-MF-19.11

References

  • Ayalew, D., Barbey, P., Marty, B., Reisberg, L., Yirgu, G. and Pik, R., (2002). Source, genesis, and timing of giant ignimbrite deposits associated with Ethiopian continental flood basalts, Geochimica et Cosmochimica Acta, 66, 1429–1448. https://doi.org/10.1016/S0016-7037(01)00834-1
  • Aydar, E., Gourgaud, A., Ulusoy, I., Digonnet, F., Labazuy, P., Şen, E., Bayhan, H., Blumenthal. M. M., and van der Kaaden, G., and Vlodavetz V I. (1964). Turkey & Caucasus. Catalog of active volcanoes of the world and solfatara fields, Rome: IAVCEI 17, 1-23.
  • Buket, E. and Temel, A. (1998). Major-element, trace-element, and Sr–Nd isotopic geochemistry and genesis of Varto-Mus¸volcanic rocks, Eastern Turkey. Journal of Volcanology and Geothermal Research, 85, 405-422. https://doi.org/10.1016/s0377-0273(98)00064
  • Candan, O., Oberhanslı, R., Dora O.Ö., Çetinkaplan, M., Koralay, E., Rimmele, G., Chen, F. ve Akal, C., (2011). Menderes masifinin Pan-Afrikan temel ve paleozoyik erken tersiyer örtü serilerinin polimetamorfik evrimi. Maden Tetnik Arama Dergisi, 142, 123-165, Ankara.
  • Çubukçu, H. E, Ulusoy, İ., Ersoy, O, Aydar, E., Şen, E., Gourgaud, A. and Guillou, H. (2012). Mt Nemrut Volcano (Eastern Turkey): Temporal petrological evolution, Journal of Volcanology and Geothermal Research, 209/210, 33-60. https://doi.org/10.1016/j.jvolgeores.2011.08.005
  • Dávila-Harris P., (2009). Explosive ocean-island volcanism: the 1.8–0.7Ma explosive eruption history of Cañadas volcano recorded bythe pyroclastic successions around Adeje and Abona, Southern Tenerife, Canary Islands [unpublished Ph.D. Thesis]: Leicester, University of Leicester, UK.
  • Ercan, T., Fujitani, T., Matsuda, J.I., Notsu, K., Tokel, S. and Ui, T. (1990). Doğu ve Güneydoğu Anadolu Neojen-Kuvaterner volkaniklerine ilişkin yeni jeokimyasal, radyometrik ve izotopik verilerin yorumu, Maden Teknik Arama Dergisi, 110, 143-164.
  • Freundt, A. and Schmincke, H.U. (1995). Eruption and emplacement of a basaltic welded ignimbrite during caldera formation on Gran Canaria, Bulletin of Volcanology, 56, 640-659.
  • Irvine, T.N. and Baragar, W.R.A. (1971). A guide to the chemical classification of the common volcanic rocks, Canadien Journal of Earth Science, 8, 448-523.
  • Karaoğlu, Ö., Özdemir, Y., Tolluoğlu, A. Ü., Karabıyıkoğlu, M., Köse, O. and Froger, J. L. (2005). Stratigraphy of the volcanic products around Nemrut Caldera: Implications for reconstruction of the caldera formation, Turkish Journal of Earth Science, 14, 123-143.
  • Kay, S. M., Mpodozis, C. and Coira, B. (1987). Neogene magmatism, tectonism, and mineral deposits of the central andes (22°S to 33°S Latitude), 258, 4600.
  • Kaya, H. ve Kılıç, A.D. (2018). Pütürge metamorfitlerindeki amfibolit fasiyesi granatların mineralojisi ve Sm-Nd İzotop jeokimyası, Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11/3, 499-508. https://doi.org/10.18185/erzifbed.411764
  • Kılıç, A. D. ve Çakmak, B. (2019). Bitlis ignimbiritlerinin petrografik ve jeokimyasal özellikleri, FÜBAP-MF.19.11 Yüksek Lisans Tezi Araştırma Projesi.
  • Kılıç, A.D. and İnceöz, M. (2015). Mineralogical, Geochemical and ısotopic effect of silica in ultramaphic systems, Eastern Anatolian Turkey, Geochemistry International, 53/4, 369–382. https://doi.org/10.1134/S0016702915040035
  • Koralay, T. And Kadıoğlu, Y.K. (2008). Reasons of different colors in the ignimbirite lithology: Micro-XRF and confocal raman spectrometry method, Spectrochimica Acta Part A, 69, 947-955, https://doi.org/10.1016/j.saa.2007.05.063
  • Kurttaş, T. and Tolluoğlu, A.Ü. (2003). Morphological analysis of active Mount Nemrut stratovolcano, eastern Turkey: evidences and possible impact areas of future eruption, Journal of Volcanology and Geothermal Research, 123, 301–312. https://doi.org/10.1016/s0377-0273(03)00002-7
  • Le Maitre R.W., Bateman P., Dudek A., Keller J., Lameyre J., Le Bas M.J., Sabine P.A., Schmid R., Sorensen H., Streckeisen A., Woolley A.R. and Zanettin B. (1989). A classification of igneous rocks and glossary of terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell Scientific Publications, Oxford, U.K.
  • Mandeville, C. W., Carey, S. and Sigurdsson, H. (1996). Magma mixing, fractional crystallization and volatile degassing during the 1883 eruption of Krakatau volcano, Indonesia, Journal of Volcanology and Geothermal Research, 74, 243-274. https://doi.org/10.1016/S0377-0273(96)00060-1
  • Maniar, P.D. and Piccoli, P.M. (1989). Tectonic discrimination of granitoids, Bulletin Geology Society America, 101, 635–643. https://doi.org/10.1130/0016-7606(1989)101
  • McDonough, W. And Sun, S.S. (1989). The composition of the Earth, Chemichal Geology, 120, 223–253.
  • Nesbitt, H.W. (1979). Mobility and fractionation of rare earth elements during weathering of a granodiorite, Nature, 279, 206–210.
  • Özdemir, Y, (2003). Nemrut Kalderası güneyi’nin jeolojisi, mineralojisi ve petrografisi, The geology, mineralogy and petrography of the southern Nemrut Caldera, MSc Thesis, Yüzüncü Yıl University, Van, Turkey [in Turkish with English abstract, unpublished].
  • Özdemir, Y., Karaoğlu, Ö., Tolluoğlu, A.Ü. and Güleç, N. (2006). Volcanostratigraphy and petrogenesis of the Nemrut stratovolcano (East Anatolian High Plateau): the most recent postcollisional volcanism in Turkey, Chemical Geology, 226, 189-211, https://doi.org/10.1016/j.chemgeo.2005.09.020
  • Parker, A. (1970). An index of weathering for silicate rocks, Geological Magasine, 107, 501-504.
  • Pearce, J.A. (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth, C.J., Norry, N.J. Eds., Continental Basalts and Mantle Xenoliths’, Shiva,Cheshire, UK, 230-249.
  • Peccerillo, A. and Taylor, S.R. (1976). Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, Northern Turkey, Contribution and Mineralogic Petrology, 58, 63-91.
  • Rao, K.S. and Noferesti, H. (2008). Brittle fialure in heterogeneous crystalline rocks, Defence Science Journal, 58/2, 285–294.
  • Riehle, J.R. (1973). Calculated compaction profiles of rhyolitic ash-flow tuffs, Geology Society American Bulletin, 84, 2193-2216.
  • Rollinson, H.R. (1993). Using geochemical data: Evaluation, presentation, interpretation. John Wiley & Sons Inc., New York. 352pp.
  • Sun, S.S. and McDonough, W.F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D. and Norry, M.J. (eds.), Magmatism in ocean basins, Geological Society of London Special Publication, 42, 313-345.
  • Şengün, M., Çağlayan, M. A. ve Sevin, M. (1991). Bitlis Masifi Bitlis-Tatvan- Hizan Şirvan dolayının jeolojisi, Maden Tetkik ve Arama Genel Müdürlüğü Jeolojik Etütleri Dairesi, Rapor No: 9105, Ankara, 1991.
  • Şaroğlu, F. ve Yılmaz, Y. (1984). Doğu Anadolu'nun neotektoniği ve ilgili magmatizması, Ketin Sempozyumu bildirileri, 149-162. https://doi.org/10.25288/tjb.593423
  • Şaroğlu, F. ve Yılmaz, Y. (1986). Doğu Anadolu'da neotektonik dönemdeki jeolojik evrim ve havza modelleri, Maden Teknik Arama Dergisi, 107, 73-94.
  • Şengör, A.M.C. (1980). Türkiye’nin neotektoniğinin esasları, Türkiye Jeoloji Kurultayı Kitapcığı, 40s. Ankara.

Bitlis ignimbiritinin petrografik ve jeokimyasal özellikleri

Year 2021, Volume: 11 Issue: 4, 1093 - 1102, 15.10.2021
https://doi.org/10.17714/gumusfenbil.920804

Abstract

Bu çalışmada Nemrut volkanizması ürünü Bitlis ignimbiritlerin mineralojik ve jeokimyasal özellikleri ile faz ilişkileri incelenmiştir. Bitlis ignimbiriti, farklı renk ve bileşim oranına sahiptir. Mineralojik bileşimi plajiyoklaz, sanidin, anortoklaz, ojit, olivin, biyotit, hematit, kuvars ve ilmenitten oluşan piroklastik bir kayaç istifidir. Bitlis ignimbiriti volkanik yay, yay gerisi veya kıta içi alanlarda oluşan, trakit- riyolit bileşimindeki magmanın püskürmesi veya kıta içi çatlaklarda magmanın yükselimi sırasında kirlenmesi sonucu oluşur. İgnimbirit seviyeleri arasında bileşen oranı, kimyasal bileşim ve renk farklılığı vardır. Kaldera öncesi dönemi temsil eden ve başlıca pomza, kayaç parçaları, yönlü fiammeler, sepiolitik parçacıklar ile sanidin mineraline dönüşüm gibi özellikler en az iki fazı işaret eder ve devitrikasyonda kısmen renk farklılığına sebep olur. Mineral alterasyonları ve yüksek Ba/Sr (1.48-1.92), Ba/Ta (33.0-34.6), Th/La (0.24-0.25), Ba/La (11.2-15) oranlarından ignimbiritin oluşumu sırasında veya sonrasında, metamorfizma veya kabuksal kirlenmenin geliştiğini gösterir. Bitlis ignimbiritinin jeokimyasal özellikleri kısmen küçük hacimli silisik bir volkanizmayı gösterir. Üç farklı seviye arasındaki farklılık, magmatik süreçler ve faz evreleri arasındaki zaman aralığı veya devitrifikasyondan kaynaklanabilir.

Supporting Institution

Fırat Üniversitesi

Project Number

Fübap-MF-19.11

Thanks

Bu çalışma, Fırat Üniversitesi Bilimsel Araştırma Projeleri (FÜBAP) Birimi tarafından, Fübap-MF-19.11 no’lu yüksek lisans tez projesi kapsamında desteklenmiş ve projelendirilmiştir. Mali kaynak sağlayan, üniversitemiz FÜBAP birimine teşekkür ederiz.

References

  • Ayalew, D., Barbey, P., Marty, B., Reisberg, L., Yirgu, G. and Pik, R., (2002). Source, genesis, and timing of giant ignimbrite deposits associated with Ethiopian continental flood basalts, Geochimica et Cosmochimica Acta, 66, 1429–1448. https://doi.org/10.1016/S0016-7037(01)00834-1
  • Aydar, E., Gourgaud, A., Ulusoy, I., Digonnet, F., Labazuy, P., Şen, E., Bayhan, H., Blumenthal. M. M., and van der Kaaden, G., and Vlodavetz V I. (1964). Turkey & Caucasus. Catalog of active volcanoes of the world and solfatara fields, Rome: IAVCEI 17, 1-23.
  • Buket, E. and Temel, A. (1998). Major-element, trace-element, and Sr–Nd isotopic geochemistry and genesis of Varto-Mus¸volcanic rocks, Eastern Turkey. Journal of Volcanology and Geothermal Research, 85, 405-422. https://doi.org/10.1016/s0377-0273(98)00064
  • Candan, O., Oberhanslı, R., Dora O.Ö., Çetinkaplan, M., Koralay, E., Rimmele, G., Chen, F. ve Akal, C., (2011). Menderes masifinin Pan-Afrikan temel ve paleozoyik erken tersiyer örtü serilerinin polimetamorfik evrimi. Maden Tetnik Arama Dergisi, 142, 123-165, Ankara.
  • Çubukçu, H. E, Ulusoy, İ., Ersoy, O, Aydar, E., Şen, E., Gourgaud, A. and Guillou, H. (2012). Mt Nemrut Volcano (Eastern Turkey): Temporal petrological evolution, Journal of Volcanology and Geothermal Research, 209/210, 33-60. https://doi.org/10.1016/j.jvolgeores.2011.08.005
  • Dávila-Harris P., (2009). Explosive ocean-island volcanism: the 1.8–0.7Ma explosive eruption history of Cañadas volcano recorded bythe pyroclastic successions around Adeje and Abona, Southern Tenerife, Canary Islands [unpublished Ph.D. Thesis]: Leicester, University of Leicester, UK.
  • Ercan, T., Fujitani, T., Matsuda, J.I., Notsu, K., Tokel, S. and Ui, T. (1990). Doğu ve Güneydoğu Anadolu Neojen-Kuvaterner volkaniklerine ilişkin yeni jeokimyasal, radyometrik ve izotopik verilerin yorumu, Maden Teknik Arama Dergisi, 110, 143-164.
  • Freundt, A. and Schmincke, H.U. (1995). Eruption and emplacement of a basaltic welded ignimbrite during caldera formation on Gran Canaria, Bulletin of Volcanology, 56, 640-659.
  • Irvine, T.N. and Baragar, W.R.A. (1971). A guide to the chemical classification of the common volcanic rocks, Canadien Journal of Earth Science, 8, 448-523.
  • Karaoğlu, Ö., Özdemir, Y., Tolluoğlu, A. Ü., Karabıyıkoğlu, M., Köse, O. and Froger, J. L. (2005). Stratigraphy of the volcanic products around Nemrut Caldera: Implications for reconstruction of the caldera formation, Turkish Journal of Earth Science, 14, 123-143.
  • Kay, S. M., Mpodozis, C. and Coira, B. (1987). Neogene magmatism, tectonism, and mineral deposits of the central andes (22°S to 33°S Latitude), 258, 4600.
  • Kaya, H. ve Kılıç, A.D. (2018). Pütürge metamorfitlerindeki amfibolit fasiyesi granatların mineralojisi ve Sm-Nd İzotop jeokimyası, Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 11/3, 499-508. https://doi.org/10.18185/erzifbed.411764
  • Kılıç, A. D. ve Çakmak, B. (2019). Bitlis ignimbiritlerinin petrografik ve jeokimyasal özellikleri, FÜBAP-MF.19.11 Yüksek Lisans Tezi Araştırma Projesi.
  • Kılıç, A.D. and İnceöz, M. (2015). Mineralogical, Geochemical and ısotopic effect of silica in ultramaphic systems, Eastern Anatolian Turkey, Geochemistry International, 53/4, 369–382. https://doi.org/10.1134/S0016702915040035
  • Koralay, T. And Kadıoğlu, Y.K. (2008). Reasons of different colors in the ignimbirite lithology: Micro-XRF and confocal raman spectrometry method, Spectrochimica Acta Part A, 69, 947-955, https://doi.org/10.1016/j.saa.2007.05.063
  • Kurttaş, T. and Tolluoğlu, A.Ü. (2003). Morphological analysis of active Mount Nemrut stratovolcano, eastern Turkey: evidences and possible impact areas of future eruption, Journal of Volcanology and Geothermal Research, 123, 301–312. https://doi.org/10.1016/s0377-0273(03)00002-7
  • Le Maitre R.W., Bateman P., Dudek A., Keller J., Lameyre J., Le Bas M.J., Sabine P.A., Schmid R., Sorensen H., Streckeisen A., Woolley A.R. and Zanettin B. (1989). A classification of igneous rocks and glossary of terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks. Blackwell Scientific Publications, Oxford, U.K.
  • Mandeville, C. W., Carey, S. and Sigurdsson, H. (1996). Magma mixing, fractional crystallization and volatile degassing during the 1883 eruption of Krakatau volcano, Indonesia, Journal of Volcanology and Geothermal Research, 74, 243-274. https://doi.org/10.1016/S0377-0273(96)00060-1
  • Maniar, P.D. and Piccoli, P.M. (1989). Tectonic discrimination of granitoids, Bulletin Geology Society America, 101, 635–643. https://doi.org/10.1130/0016-7606(1989)101
  • McDonough, W. And Sun, S.S. (1989). The composition of the Earth, Chemichal Geology, 120, 223–253.
  • Nesbitt, H.W. (1979). Mobility and fractionation of rare earth elements during weathering of a granodiorite, Nature, 279, 206–210.
  • Özdemir, Y, (2003). Nemrut Kalderası güneyi’nin jeolojisi, mineralojisi ve petrografisi, The geology, mineralogy and petrography of the southern Nemrut Caldera, MSc Thesis, Yüzüncü Yıl University, Van, Turkey [in Turkish with English abstract, unpublished].
  • Özdemir, Y., Karaoğlu, Ö., Tolluoğlu, A.Ü. and Güleç, N. (2006). Volcanostratigraphy and petrogenesis of the Nemrut stratovolcano (East Anatolian High Plateau): the most recent postcollisional volcanism in Turkey, Chemical Geology, 226, 189-211, https://doi.org/10.1016/j.chemgeo.2005.09.020
  • Parker, A. (1970). An index of weathering for silicate rocks, Geological Magasine, 107, 501-504.
  • Pearce, J.A. (1983). Role of the sub-continental lithosphere in magma genesis at active continental margins. In: Hawkesworth, C.J., Norry, N.J. Eds., Continental Basalts and Mantle Xenoliths’, Shiva,Cheshire, UK, 230-249.
  • Peccerillo, A. and Taylor, S.R. (1976). Geochemistry of Eocene calcalkaline volcanic rocks from the Kastamonu area, Northern Turkey, Contribution and Mineralogic Petrology, 58, 63-91.
  • Rao, K.S. and Noferesti, H. (2008). Brittle fialure in heterogeneous crystalline rocks, Defence Science Journal, 58/2, 285–294.
  • Riehle, J.R. (1973). Calculated compaction profiles of rhyolitic ash-flow tuffs, Geology Society American Bulletin, 84, 2193-2216.
  • Rollinson, H.R. (1993). Using geochemical data: Evaluation, presentation, interpretation. John Wiley & Sons Inc., New York. 352pp.
  • Sun, S.S. and McDonough, W.F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: Saunders, A.D. and Norry, M.J. (eds.), Magmatism in ocean basins, Geological Society of London Special Publication, 42, 313-345.
  • Şengün, M., Çağlayan, M. A. ve Sevin, M. (1991). Bitlis Masifi Bitlis-Tatvan- Hizan Şirvan dolayının jeolojisi, Maden Tetkik ve Arama Genel Müdürlüğü Jeolojik Etütleri Dairesi, Rapor No: 9105, Ankara, 1991.
  • Şaroğlu, F. ve Yılmaz, Y. (1984). Doğu Anadolu'nun neotektoniği ve ilgili magmatizması, Ketin Sempozyumu bildirileri, 149-162. https://doi.org/10.25288/tjb.593423
  • Şaroğlu, F. ve Yılmaz, Y. (1986). Doğu Anadolu'da neotektonik dönemdeki jeolojik evrim ve havza modelleri, Maden Teknik Arama Dergisi, 107, 73-94.
  • Şengör, A.M.C. (1980). Türkiye’nin neotektoniğinin esasları, Türkiye Jeoloji Kurultayı Kitapcığı, 40s. Ankara.
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Büşra Çakmak 0000-0003-3743-8631

Ayşe Didem Kılıç

Project Number Fübap-MF-19.11
Publication Date October 15, 2021
Submission Date April 20, 2021
Acceptance Date July 16, 2021
Published in Issue Year 2021 Volume: 11 Issue: 4

Cite

APA Çakmak, B., & Kılıç, A. D. (2021). Bitlis ignimbiritinin petrografik ve jeokimyasal özellikleri. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(4), 1093-1102. https://doi.org/10.17714/gumusfenbil.920804