Research Article
BibTex RIS Cite

Carbonic anhydrase inhibition and antioxidant activity of the axially naphthoxazin group substituted silicon phthalocyanines

Year 2022, Volume: 12 Issue: 1, 227 - 234, 15.01.2022
https://doi.org/10.17714/gumusfenbil.1001784

Abstract

Silicon phthalocyanines are an interesting subclass of phthalocyanines. They are abundant and have extremely low toxicity levels. The low solubility of silicon phthalocyanine is the major obstacle to its use in many different applications. Therefore, in a previous study, two axially substituted silicon phthalocyanines were synthesized to increase their solubility. In this study, these axially substituted silicon phthalocyanines were evaluated for carbonic anhydrase inhibition and antioxidant activities. The carbonic anhydrase (CA) inhibition potential of silicon phthalocyanines was evaluated by esterase activity. The antioxidant activity was tested by 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging and ferric ion (III) reducing/antioxidant power (FRAP) assays. The silicon phthalocyanines had significant CA inhibitory activity [50% inhibitory values (IC50): 495 ± 12.74 nM and 857 ± 13.03 nM for H4-Si and H3-Si, respectively]. According to the antioxidant studies, 50% scavenging concentration (SC50) values of DPPH• assay were 2.29 ± 0.06 µg/mL and 1.39 ± 0.43 µg/mL for H3-Si and H4-Si and Trolox Equivalent Antioxidant Capacity (TEAC) values of FRAP test were 259.33 ± 48.27 µM and 342.00 ± 44.40 for H3-Si µM and H4-Si, respectively. Consequently, silicon phthalocyanine compounds are considered to have great potential for their use in various fields such as food and medicine.

References

  • Agirtaş, M.S., Cabir, B., Gümüş, S., Özdemir, S. and Dündar, A. (2018). Synthesis and antioxidant, aggregation, and electronic properties of 6-tert-butyl-1,4-benzodioxine substituted phthalocyanines. Turkish Journal of Chemistry, 42, 100-111. https://doi.org/10.3906/kim-1605-59
  • Aktaş Karaçelik, A., Efe, D., Çakır, V. and Bıyıklıoğlu, Z. (2021). Aksiyal disübstitüe silisyum ftalosiyaninlerin biyolojik aktivitelerinin belirlenmesi. Journal of the Institute of Science and Technology, 11(2), 1302-1310. https://doi.org/10.21597/jist.804539
  • Alkan Türkuçar, S., Aktaş Karaçelik. A. and Karaköse, M. (2021). Phenolic compounds, essential oil composition, and antioxidant activity of Angelica purpurascens (Avé-Lall.) Gill. Turkish Journal of Chemistry, 45(3), 956-966. https://doi.org/10.3906/kim-2101-28
  • Arslan, T., Biyiklioglu, Z. and Şentürk, M. (2018). The synthesis of axially disubstituted silicon phthalocyanines, their quaternized derivatives and first inhibitory effect on human cytosolic carbonic anhydrase isozymes hCA I and II, RSC Advances, 8, 10172-10178. https://doi.org/10.1039/C7RA13674A
  • Arslan, T., Çakır, N., Keleş, T., Biyiklioglu, Z. and Senturk, M. (2019). Triazole substituted metal-free, metallo-phthalocyanines and their water soluble derivatives as potential cholinesterases inhibitors: Design, synthesis and in vitro inhibition study. Bioorganic Chemistry, 90, 103100. https://doi.org/10.1016/j.bioorg.2019.103100
  • Barut, B., Demirbaş, Ü., Özel, A. and Kantekin, H. (2017a). Novel water soluble morpholine substituted Zn(II) phthalocyanine: Synthesis, characterization, DNA/BSA binding, DNA photocleavage and topoisomerase I inhibition. International Journal of Biological Macromolecules, 105(1), 499-508. https://doi.org/10.1016/j.ijbiomac.2017.07.072
  • Barut, B., Demirbaş, Ü., Şenocak, A., Özel, A. and Kantekin, H. (2017b). Water soluble axially morpholine disubstituted silicon phthalocyanines: Synthesis, characterisation, DNA/BSA binding, DNA photocleavage properties. Synthetic Metals, 229, 22-32. https://doi.org/10.1016/j.synthmet.2017.05.006
  • Baş, H. and Biyiklioglu, Z. (2015). Non-aggregated axially naphthoxazin group substituted silicon phthalocyanines: Synthesis and electrochemistry. Journal of Organometallic Chemistry, 791, 238-243. https://doi.org/10.1016/j.jorganchem.2015.05.015
  • Benzie, I.F.F. and Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292
  • Bispo, M., Pereira, P.M.R., Setaro, F., Rodríguez-Morgade, M.S, Fernandes, R., Torres, T. and Tomé, J. P.C. (2018). A galactose dendritic silicon (IV) phthalocyanine as a photosensitizing agent in cancer photodynamic therapy. ChemPlusChem, 83(9), 855-860. https://doi.org/10.1002/cplu.201800370
  • Brand-Williams, W., Cuvelier, M.E. and Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Food Science and Technology LEB, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  • Çakir, D., Göl. C., Çakir, V., Durmuş, M., Biyiklioğlu, Z. and Kantekin, H. (2015). Water soluble {2-[3-(diethylamino)phenoxy]ethoxy} substituted zinc(II) phthalocyanine photosensitizers. Journal of Luminescence, 159, 79-87. https://doi.org/10.1016/j.jlumin.2014.10.044
  • Chan, C.M., Lo, P.C., Yeung, S.L., Ng, D.K. and Fong, W.P. (2010). Photodynamic activity of a glucoconjugated silicon(IV) phthalocyanine on human colon adenocarcinoma. Cancer Biology & Therapy, 10(2), 126-34. https://doi.org/10.4161/cbt.10.2.11946
  • Demirbaş, Ü., Barut, B., Yalçın, İ., Değirmencioğlu, İ., Yıldırmış, S. and Özel, A. (2019). Synthesis, characterization, and investigation of cholinesterase inhibitory properties of novel phthalocyanines. Journal of Heterocyclic Chemistry, 56(5), 1553. https://doi.org/10.1002/jhet.3530
  • Demirkapi, D., Şirin, A., Yildiz, B.T., Çakar, Z.P. and Sesalan, B.Ş. (2014). The synthesis of new silicon phthalocyanines and analysis of their photochemical and biological properties. Synthetic Metals, 187, 152-159. https://doi.org/10.1016/j.synthmet.2013.11.001
  • Efe, D. (2020). Carbonic anhydrase enzyme inhibition and biological activities of Satureja hortensis L. essential oil. Industrial Crops and Products, 156, 112849. https://doi.org/10.1016/j.indcrop.2020.112849
  • Günsel, A., Alici, E.H., Bilgiçli, A.T., Arabaci, G. and Yaraşir, M.N. (2019). Antioxidant properties of water-soluble phthalocyanines containing quinoline 5-sulfonic acid groups. Turkish Journal of Chemistry, 43, 1030-1039. https://doi.org/10.3906/kim-1904-12
  • Günsel, A., Bilgiçli, A.T., Kandemir, C., Sancak, R., Arabaci, G. and Yarasir, M.N. (2020). Comparison of novel tetra-substituted phthalocyanines with their quaternized derivatives: Antioxidant and antibacterial properties. Synthetic Metals, 260, 116288. https://doi.org/10.1016/j.synthmet.2019.116288
  • Güzel, E., Şaki, N., Akın, M., Nebioğlu, M. and Şişman, İ. (2018). Zinc and chloroindium complexes of furan-2-ylmethoxy substituted phthalocyanines: Preparation and investigation of aggregation, singlet oxygen generation, antioxidant and antimicrobial properties. Synthetic Metals, 245, 127-134. https://doi.org/10.1016/j.synthmet.2018.08.018
  • Güzel, E., Koçyiğit, Ü.M., Arslan, B.S., Ataş, M., Taslimi, P., Gökalp, F., Nebioğlu, M., Şişman, İ. and Gulçin, İ. (2019). Aminopyrazole-substituted metallophthalocyanines: Preparation, aggregation behavior, and investigation of metabolic enzymes inhibition properties. Archiv der Pharmazie (Weinheim), 352(2), e1800292. http://dx.doi.org/10.1002/ardp.201800292 PMID: 30600535
  • Kantar, C., Mavi, V., Baltaş, N., Islamoǧlu, F. and Şaşmaz, S. (2016). Novel zinc(II)phthalocyanines bearing azo-containing schiff base: Determination of pKa values, absorption, emission, enzyme inhibition and photochemical properties. Journal of Molecular Structure, 1122, 88-99. https://doi.org/10.1016/j.jorganchem.2014.12.042
  • Karaçelik, A.A., Küçük, M., Efe, D., Çakır, V. and Bıyıklıoğlu, Z. (2021). Carbonic anhydrase inhibition potential and some bioactivities of the peripherally tetrasubstituted cobalt(II), titanium(IV), manganese(III) phthalocyanines. Letters in Drug Design & Discovery, 18(4), 365-371. https://doi.org/10.2174/1570180817999201009162347
  • Karaçelik, A.A., Küçük, M., Iskefiyeli, Z., Aydemir, S., De Smet, S., Miserez, B. and Sandra, P. (2015). Antioxidant components of Viburnum opulus L. determined by on-line HPLC–UV–ABTS radical scavenging and LC–UV–ESI-MS methods. Food Chemistry, 175, 106-114. https://doi.org/10.1016/j.foodchem.2014.11.085
  • Keleş, T., Barut, B., Özel, A. and Biyiklioglu, Z. (2019). Synthesis of water soluble silicon phthacyanine, naphthalocyanine bearing pyridine groups and investigation of their DNA interaction, topoisomerase inhibition, cytotoxic effects and cell cycle arrest properties. Dyes and Pigments, 164, 372-383. https://doi.org/10.1016/j.dyepig.2019.01.044
  • Leznoff, C.C. and Lever, A.B.P. (Ed.) (1996). Phthalocyanines, properties and applications. New York: VCH Publisher.
  • Li, K., Qiu, L., Liu, Q., Lv, G., Zhao, X., Wang, S. and Lin, J. (2017). Conjugate of biotin with silicon(IV) phthalocyanine for tumor-targeting photodynamic therapy. Journal Of Photochemistry And Photobiology B-Biology, 174, 243-250. https://doi.org/10.1016/j.jphotobiol.2017.08.003
  • Master, A.M., Rodriguez, M.E., Kenney, M.E., Oleinick, N.L. and Gupta, A.S. (2010). Delivery of the photo sensitizer Pc 4 in PEG–PCL micellesfor in vitro PDT studies. Journal of Pharmaceutical Sciences, 99(5), 2386-2398. https://doi.org/10.1002/jps.22007
  • Özil, M., Balaydın, H.T., and Şentürk, M. (2019). Synthesis of 5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-one’s aryl Schiff base derivatives and investigation of carbonic anhydrase and cholinesterase (AChE, BuChE) inhibitory properties. Bioorganic Chemistry, 86, 705-713. http://dx.doi.org/10.1016/j.bioorg.2019.02.045 PMID: 30836234
  • Perrin, D.D., Armarego, W.L.F. and Perrin, D.R. (2nd Edn) (1985). Purification of laboratory chemicals. New York: Pergamon Press.
  • Rodriguez, M.E., Zhang, P., Azizuddin, K., Santos, G.B.D., Chiu, S., Xue, L., Berlin, J.C., Peng, X., Wu, H., Lam, M., Nieminen, A.L., Kenney, M.E. and Oleinick, N.L. (2009). Structural factors and mechanisms underlying the improved photodynamic cell killing with silicon phthalocyanine photosensitizers directed to lysosomes Versus mitochondria. Photochemistry and Photobiology, 85(5), 1189-1200. https://doi.org/10.1111/j.1751-1097.2009.00558.x
  • Supuran, C.T. (2011). Carbonic anhydrase inhibitors and activators for novel therapeutic applications. Future Medicinal Chemistry, 3(9), 1165-1180. https://doi.org/10.4155/fmc.11.69
  • Supuran, C.T. and Scozzafava, A. (2002). Applications of carbonic anhydrase inhibitors and activators in therapy. Expert Opinion on Therapeutic Patents, 12(2), 217-242. https://doi.org/10.1517/13543776.12.2.217
  • Supuran, C.T., Scozzafava, A. and Casini, A. (2003). Carbonic anhydrase inhibitors. Medicinal Research Reviews, 23(2), 146-89. https://doi.org/10.1002/med.10025
  • Unluer, D., Kamiloglu, A.A., Direkel, S., Bektas, E., Kantekin, H. And Sancak, K. (2019). Synthesis and characterization of metallophthalocyanine with morpholine containing Schiff base and determination of their antimicrobial and antioxidant activities. Journal of Organometallic Chemistry, 900, 120936. https://doi.org/10.1016/j.jorganchem.2019.120936
  • Verpoorte, J.A., Mehta, S. and Edsall. J.T. (1967). Esterase activities of human carbonic anhydrases B and C. Journal of Biological Chemistry, 242(18), 4221-4229. https://doi.org/10.1016/S0021-9258(18)95800-X
  • Yakan, H., Çavuş, M.S., Güzel, E., Arslan, B.S., Bakır, T. and Muğlu, H. (2020). Phthalocyanines including 2- mercaptobenzimidazole analogs: synthesis, spectroscopic characteristics, quantum-chemical studies on the relationship between electronic and antioxidant properties. Journal of Molecular Structure, 1202, 1-11. http://dx.doi.org/10.1016/j.molstruc.2019.127259
  • Yıldırım, N., Bilgiçli, A.T., Alici, E.H., Arabacı, G. and Yarasir, M.N. (2017). Formation, characterization, aggregation, fluorescence and antioxidant properties of novel tetrasubstituted metal-free and metallophthalocyanines bearing (4-(methylthio)phenoxy) moieties. Journal of Molecular Structure, 1144, 66-79. https://doi.org/10.1016/j.molstruc.2017.05.006
  • Zhao, Z., Gambari, R., Lee, K.K.H., Kok, S.H.L., Wong, R.S.M., Lau, F.Y., Tang, J.C.O., Lam, K.H., Cheng, C.H., Hau, D.K.P., Chui, C.H., Wong, W.Y. and Wong, W.K. (2013). In vivo antitumour activity of amphiphilic silicon(IV) phthalocyanine with axially ligated rhodamine B. Bioorganic & Medicinal Chemistry Letters, 23(8), 2373-2376. https://doi.org/10.1016/j.bmcl.2013.02.049

Eksenel olarak naftoksazin grubu sübstitüe edilmiş silisyum ftalosiyaninlerin karbonik anhidraz inhibisyonu ve antioksidan aktivitesi

Year 2022, Volume: 12 Issue: 1, 227 - 234, 15.01.2022
https://doi.org/10.17714/gumusfenbil.1001784

Abstract

Silisyum ftalosiyaninler, ftalosiyaninlerin ilgi duyulan bir alt sınıfıdır. Bol miktarda bulunurlar ve son derece düşük toksisite seviyelerine sahiptirler. Silisyum ftalosiyanininin düşük çözünürlüğü, birçok farklı uygulamada kullanımının önündeki en büyük engeldir. Bu yüzden, çözünürlüklerini artırmak için eksenel olarak sübstitüe edilmiş iki silisyum ftalosiyanin daha önce yapılan bir çalışmada sentezlendi. Bu çalışmada, eksenel olarak sübstitüe edilmiş bu silisyum ftalosiyaninler, karbonik anhidraz inhibisyonu ve antioksidan aktiviteleri açısından değerlendirildi. Silisyum ftalosiyaninlerin karbonik anhidraz (CA) inhibisyon potansiyeli, esteraz aktivitesi ile değerlendirildi. Antioksidan aktivite, 2,2-difenil-1-pikrilhidrazil (DPPH•) radikal temizleme ve demir iyon (III) indirgeme / antioksidan güç (FRAP) metotları ile test edildi. Silisyum ftalosiyaninler, önemli CA inhibitör aktivitesine [%50 inhibitör değerleri (IC50): H4-Si ve H3-Si için sırasıyla 495 ± 12.74 nM ve 857 ± 13.03 nM] sahipti. Antioksidan çalışmalara göre, DPPH• testinin %50 temizleme konsantrasyon (SC50) değerleri sırasıyla H3-Si için 2.29 ± 0.06 µg/mL, H4-Si için 1.39 ± 0.43 µg/mL ve FRAP testinin Trolox Eşdeğer Antioksidan Kapasitesi (TEAC) değerleri H3-Si için 259.33±48.27 µM, H4-Si için 342.00 ± 44.40 µM olarak bulundu. Sonuç olarak, silisyum ftalosiyanin bileşiklerinin, gıda ve tıp gibi çeşitli alanlarda kullanımları için büyük potansiyele sahip olduğu düşünülmektedir.

References

  • Agirtaş, M.S., Cabir, B., Gümüş, S., Özdemir, S. and Dündar, A. (2018). Synthesis and antioxidant, aggregation, and electronic properties of 6-tert-butyl-1,4-benzodioxine substituted phthalocyanines. Turkish Journal of Chemistry, 42, 100-111. https://doi.org/10.3906/kim-1605-59
  • Aktaş Karaçelik, A., Efe, D., Çakır, V. and Bıyıklıoğlu, Z. (2021). Aksiyal disübstitüe silisyum ftalosiyaninlerin biyolojik aktivitelerinin belirlenmesi. Journal of the Institute of Science and Technology, 11(2), 1302-1310. https://doi.org/10.21597/jist.804539
  • Alkan Türkuçar, S., Aktaş Karaçelik. A. and Karaköse, M. (2021). Phenolic compounds, essential oil composition, and antioxidant activity of Angelica purpurascens (Avé-Lall.) Gill. Turkish Journal of Chemistry, 45(3), 956-966. https://doi.org/10.3906/kim-2101-28
  • Arslan, T., Biyiklioglu, Z. and Şentürk, M. (2018). The synthesis of axially disubstituted silicon phthalocyanines, their quaternized derivatives and first inhibitory effect on human cytosolic carbonic anhydrase isozymes hCA I and II, RSC Advances, 8, 10172-10178. https://doi.org/10.1039/C7RA13674A
  • Arslan, T., Çakır, N., Keleş, T., Biyiklioglu, Z. and Senturk, M. (2019). Triazole substituted metal-free, metallo-phthalocyanines and their water soluble derivatives as potential cholinesterases inhibitors: Design, synthesis and in vitro inhibition study. Bioorganic Chemistry, 90, 103100. https://doi.org/10.1016/j.bioorg.2019.103100
  • Barut, B., Demirbaş, Ü., Özel, A. and Kantekin, H. (2017a). Novel water soluble morpholine substituted Zn(II) phthalocyanine: Synthesis, characterization, DNA/BSA binding, DNA photocleavage and topoisomerase I inhibition. International Journal of Biological Macromolecules, 105(1), 499-508. https://doi.org/10.1016/j.ijbiomac.2017.07.072
  • Barut, B., Demirbaş, Ü., Şenocak, A., Özel, A. and Kantekin, H. (2017b). Water soluble axially morpholine disubstituted silicon phthalocyanines: Synthesis, characterisation, DNA/BSA binding, DNA photocleavage properties. Synthetic Metals, 229, 22-32. https://doi.org/10.1016/j.synthmet.2017.05.006
  • Baş, H. and Biyiklioglu, Z. (2015). Non-aggregated axially naphthoxazin group substituted silicon phthalocyanines: Synthesis and electrochemistry. Journal of Organometallic Chemistry, 791, 238-243. https://doi.org/10.1016/j.jorganchem.2015.05.015
  • Benzie, I.F.F. and Strain, J.J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical Biochemistry, 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292
  • Bispo, M., Pereira, P.M.R., Setaro, F., Rodríguez-Morgade, M.S, Fernandes, R., Torres, T. and Tomé, J. P.C. (2018). A galactose dendritic silicon (IV) phthalocyanine as a photosensitizing agent in cancer photodynamic therapy. ChemPlusChem, 83(9), 855-860. https://doi.org/10.1002/cplu.201800370
  • Brand-Williams, W., Cuvelier, M.E. and Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. Food Science and Technology LEB, 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5
  • Çakir, D., Göl. C., Çakir, V., Durmuş, M., Biyiklioğlu, Z. and Kantekin, H. (2015). Water soluble {2-[3-(diethylamino)phenoxy]ethoxy} substituted zinc(II) phthalocyanine photosensitizers. Journal of Luminescence, 159, 79-87. https://doi.org/10.1016/j.jlumin.2014.10.044
  • Chan, C.M., Lo, P.C., Yeung, S.L., Ng, D.K. and Fong, W.P. (2010). Photodynamic activity of a glucoconjugated silicon(IV) phthalocyanine on human colon adenocarcinoma. Cancer Biology & Therapy, 10(2), 126-34. https://doi.org/10.4161/cbt.10.2.11946
  • Demirbaş, Ü., Barut, B., Yalçın, İ., Değirmencioğlu, İ., Yıldırmış, S. and Özel, A. (2019). Synthesis, characterization, and investigation of cholinesterase inhibitory properties of novel phthalocyanines. Journal of Heterocyclic Chemistry, 56(5), 1553. https://doi.org/10.1002/jhet.3530
  • Demirkapi, D., Şirin, A., Yildiz, B.T., Çakar, Z.P. and Sesalan, B.Ş. (2014). The synthesis of new silicon phthalocyanines and analysis of their photochemical and biological properties. Synthetic Metals, 187, 152-159. https://doi.org/10.1016/j.synthmet.2013.11.001
  • Efe, D. (2020). Carbonic anhydrase enzyme inhibition and biological activities of Satureja hortensis L. essential oil. Industrial Crops and Products, 156, 112849. https://doi.org/10.1016/j.indcrop.2020.112849
  • Günsel, A., Alici, E.H., Bilgiçli, A.T., Arabaci, G. and Yaraşir, M.N. (2019). Antioxidant properties of water-soluble phthalocyanines containing quinoline 5-sulfonic acid groups. Turkish Journal of Chemistry, 43, 1030-1039. https://doi.org/10.3906/kim-1904-12
  • Günsel, A., Bilgiçli, A.T., Kandemir, C., Sancak, R., Arabaci, G. and Yarasir, M.N. (2020). Comparison of novel tetra-substituted phthalocyanines with their quaternized derivatives: Antioxidant and antibacterial properties. Synthetic Metals, 260, 116288. https://doi.org/10.1016/j.synthmet.2019.116288
  • Güzel, E., Şaki, N., Akın, M., Nebioğlu, M. and Şişman, İ. (2018). Zinc and chloroindium complexes of furan-2-ylmethoxy substituted phthalocyanines: Preparation and investigation of aggregation, singlet oxygen generation, antioxidant and antimicrobial properties. Synthetic Metals, 245, 127-134. https://doi.org/10.1016/j.synthmet.2018.08.018
  • Güzel, E., Koçyiğit, Ü.M., Arslan, B.S., Ataş, M., Taslimi, P., Gökalp, F., Nebioğlu, M., Şişman, İ. and Gulçin, İ. (2019). Aminopyrazole-substituted metallophthalocyanines: Preparation, aggregation behavior, and investigation of metabolic enzymes inhibition properties. Archiv der Pharmazie (Weinheim), 352(2), e1800292. http://dx.doi.org/10.1002/ardp.201800292 PMID: 30600535
  • Kantar, C., Mavi, V., Baltaş, N., Islamoǧlu, F. and Şaşmaz, S. (2016). Novel zinc(II)phthalocyanines bearing azo-containing schiff base: Determination of pKa values, absorption, emission, enzyme inhibition and photochemical properties. Journal of Molecular Structure, 1122, 88-99. https://doi.org/10.1016/j.jorganchem.2014.12.042
  • Karaçelik, A.A., Küçük, M., Efe, D., Çakır, V. and Bıyıklıoğlu, Z. (2021). Carbonic anhydrase inhibition potential and some bioactivities of the peripherally tetrasubstituted cobalt(II), titanium(IV), manganese(III) phthalocyanines. Letters in Drug Design & Discovery, 18(4), 365-371. https://doi.org/10.2174/1570180817999201009162347
  • Karaçelik, A.A., Küçük, M., Iskefiyeli, Z., Aydemir, S., De Smet, S., Miserez, B. and Sandra, P. (2015). Antioxidant components of Viburnum opulus L. determined by on-line HPLC–UV–ABTS radical scavenging and LC–UV–ESI-MS methods. Food Chemistry, 175, 106-114. https://doi.org/10.1016/j.foodchem.2014.11.085
  • Keleş, T., Barut, B., Özel, A. and Biyiklioglu, Z. (2019). Synthesis of water soluble silicon phthacyanine, naphthalocyanine bearing pyridine groups and investigation of their DNA interaction, topoisomerase inhibition, cytotoxic effects and cell cycle arrest properties. Dyes and Pigments, 164, 372-383. https://doi.org/10.1016/j.dyepig.2019.01.044
  • Leznoff, C.C. and Lever, A.B.P. (Ed.) (1996). Phthalocyanines, properties and applications. New York: VCH Publisher.
  • Li, K., Qiu, L., Liu, Q., Lv, G., Zhao, X., Wang, S. and Lin, J. (2017). Conjugate of biotin with silicon(IV) phthalocyanine for tumor-targeting photodynamic therapy. Journal Of Photochemistry And Photobiology B-Biology, 174, 243-250. https://doi.org/10.1016/j.jphotobiol.2017.08.003
  • Master, A.M., Rodriguez, M.E., Kenney, M.E., Oleinick, N.L. and Gupta, A.S. (2010). Delivery of the photo sensitizer Pc 4 in PEG–PCL micellesfor in vitro PDT studies. Journal of Pharmaceutical Sciences, 99(5), 2386-2398. https://doi.org/10.1002/jps.22007
  • Özil, M., Balaydın, H.T., and Şentürk, M. (2019). Synthesis of 5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-one’s aryl Schiff base derivatives and investigation of carbonic anhydrase and cholinesterase (AChE, BuChE) inhibitory properties. Bioorganic Chemistry, 86, 705-713. http://dx.doi.org/10.1016/j.bioorg.2019.02.045 PMID: 30836234
  • Perrin, D.D., Armarego, W.L.F. and Perrin, D.R. (2nd Edn) (1985). Purification of laboratory chemicals. New York: Pergamon Press.
  • Rodriguez, M.E., Zhang, P., Azizuddin, K., Santos, G.B.D., Chiu, S., Xue, L., Berlin, J.C., Peng, X., Wu, H., Lam, M., Nieminen, A.L., Kenney, M.E. and Oleinick, N.L. (2009). Structural factors and mechanisms underlying the improved photodynamic cell killing with silicon phthalocyanine photosensitizers directed to lysosomes Versus mitochondria. Photochemistry and Photobiology, 85(5), 1189-1200. https://doi.org/10.1111/j.1751-1097.2009.00558.x
  • Supuran, C.T. (2011). Carbonic anhydrase inhibitors and activators for novel therapeutic applications. Future Medicinal Chemistry, 3(9), 1165-1180. https://doi.org/10.4155/fmc.11.69
  • Supuran, C.T. and Scozzafava, A. (2002). Applications of carbonic anhydrase inhibitors and activators in therapy. Expert Opinion on Therapeutic Patents, 12(2), 217-242. https://doi.org/10.1517/13543776.12.2.217
  • Supuran, C.T., Scozzafava, A. and Casini, A. (2003). Carbonic anhydrase inhibitors. Medicinal Research Reviews, 23(2), 146-89. https://doi.org/10.1002/med.10025
  • Unluer, D., Kamiloglu, A.A., Direkel, S., Bektas, E., Kantekin, H. And Sancak, K. (2019). Synthesis and characterization of metallophthalocyanine with morpholine containing Schiff base and determination of their antimicrobial and antioxidant activities. Journal of Organometallic Chemistry, 900, 120936. https://doi.org/10.1016/j.jorganchem.2019.120936
  • Verpoorte, J.A., Mehta, S. and Edsall. J.T. (1967). Esterase activities of human carbonic anhydrases B and C. Journal of Biological Chemistry, 242(18), 4221-4229. https://doi.org/10.1016/S0021-9258(18)95800-X
  • Yakan, H., Çavuş, M.S., Güzel, E., Arslan, B.S., Bakır, T. and Muğlu, H. (2020). Phthalocyanines including 2- mercaptobenzimidazole analogs: synthesis, spectroscopic characteristics, quantum-chemical studies on the relationship between electronic and antioxidant properties. Journal of Molecular Structure, 1202, 1-11. http://dx.doi.org/10.1016/j.molstruc.2019.127259
  • Yıldırım, N., Bilgiçli, A.T., Alici, E.H., Arabacı, G. and Yarasir, M.N. (2017). Formation, characterization, aggregation, fluorescence and antioxidant properties of novel tetrasubstituted metal-free and metallophthalocyanines bearing (4-(methylthio)phenoxy) moieties. Journal of Molecular Structure, 1144, 66-79. https://doi.org/10.1016/j.molstruc.2017.05.006
  • Zhao, Z., Gambari, R., Lee, K.K.H., Kok, S.H.L., Wong, R.S.M., Lau, F.Y., Tang, J.C.O., Lam, K.H., Cheng, C.H., Hau, D.K.P., Chui, C.H., Wong, W.Y. and Wong, W.K. (2013). In vivo antitumour activity of amphiphilic silicon(IV) phthalocyanine with axially ligated rhodamine B. Bioorganic & Medicinal Chemistry Letters, 23(8), 2373-2376. https://doi.org/10.1016/j.bmcl.2013.02.049
There are 38 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Ayça Aktaş Karaçelik 0000-0001-5381-2924

Volkan Çakır 0000-0002-5817-0817

Hüseyin Baş This is me 0000-0002-8722-3359

Zekeriya Bıyıklıoğlu 0000-0001-5138-214X

Publication Date January 15, 2022
Submission Date September 29, 2021
Acceptance Date December 6, 2021
Published in Issue Year 2022 Volume: 12 Issue: 1

Cite

APA Aktaş Karaçelik, A., Çakır, V., Baş, H., Bıyıklıoğlu, Z. (2022). Carbonic anhydrase inhibition and antioxidant activity of the axially naphthoxazin group substituted silicon phthalocyanines. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(1), 227-234. https://doi.org/10.17714/gumusfenbil.1001784