Research Article
BibTex RIS Cite

Yüksek entropi alaşımlı malzemeler ile modellenen bir gaz türbini çarkının harmonik tepki analizi

Year 2022, Volume: 12 Issue: 1, 54 - 67, 15.01.2022
https://doi.org/10.17714/gumusfenbil.889420

Abstract

Bir gaz türbininin çark tasarımındaki sorunlardan biride dengesiz kütleden meydana gelen harmonik kuvvetin sebep olduğu frekans-gerilme cevabını tahmin etmektir. Oluşabilecek çark kusurlarından kaçınmak için tasarımcılar temel olarak makine parçalarının yüksek hız altındaki gerilme şartlarını belirlemelidirler. Bu araştırma, bir gaz türbini motorunun çarkı için yüksek entropi alaşımlı malzemelerle modellemenin harmonik tepkiler üzerindeki etkilerini ilk kez incelemektedir. Harmonik analizleri gerçekleştirmek için ticari Ansys sonlu eleman paketi kullanılarak bir gaz türbini motorunun bir çarkı için bir sonlu eleman modeli oluşturulmuştur. Sonlu eleman modelinde çark ve şaft sırasıyla katı ve kiriş sonlu elemanları kullanılarak modellenmiştir. Bir gaz türbini motorunun çarkı için farklı yüksek entropi alaşımlarına sahip malzemelerin stres tepkileri üzerindeki etkisi incelenmiştir. Sonuçlar en yüksek gerilimin, tarama frekansı aralığı boyunca AlCoCrFeNi yüksek entropi alaşımlı malzemede mevcut olduğunu göstermektedir. Ek olarak birinci rezonans frekansları için en yüksek gerilim-yüzde oranı CoCrFeNi yüksek entropi alaşımlı malzemededir. Ayrıca hesaplamalar birinci rezonans frekansları için minimum gerilim-yüzde oranının AlCoCrFeMo0.1Ni yüksek entropili alaşım malzemede olduğunu göstermektedir. Diğer bir bulgu ise ikinci rezonans frekansları için maksimum yüzde oranının CoCrFeNi yüksek entropili alaşımlı malzemede olmasıdır. Ayrıca ikinci rezonans frekansları için en düşük yüzde oranı AlCoCrFeMo0.1Ni yüksek entropi alaşımlı malzemede tespit edilmiştir.

References

  • Bishop, R.E.D. (1959). The vibration of rotating shafts, Journal Mechanical Engineering Science 1(1). https://doi.org/10.1243/JMES_JOUR_1959_001_024_02
  • Christensen, R.M., (2013). The Theory of Materials Failure, Croydon- London, Oxford University Press.
  • Conway, P.L.J. (2018). Structure and Stability of New Types of Lightweight High Entropy and Compositionally Complex Alloys. Ph. D. thesis, The University of New South Wales School of Materials Science and Engineering, Sydney.
  • Efe-Ononeme, O. E., Ikpe, A. E. and Arievie, G. O. (2018). Modal Analysis of Conventional Gas Turbine Blade Materials (Udimet 500 and In738) for Industrial Applications. Journal of Engineering Technology and Applied Sciences, 3 (2), 119-133. https://doi.org/10.30931/jetas.452857
  • Erdoğan, A. and Zeytin, S. (2019). High Entropy Alloys: Principles and Alloy Design. Omer Halisdemir University Journal of Engineering Sciences, 8(2), 1160-1178. https://doi.org/10.28948/ngumuh.517876
  • Ertas, B. H. (2005). Rotordynamic force coefficients of pocket damper seals, Ph.D. thesis, Texas A&M University, Texas.
  • Fernandes, R., El-Borgi, S., Ahmed, K., Friswell, M. I. and Jamia, N. (2016). Static fracture and modal analysis simulation of a gas turbine compressor blade and bladed disk system. Advanced Modeling and Simulation in Engineering Sciences, 3 (30), 1-23. https://doi.org/10.1186/s40323-016-0083-7
  • Fujieda, T., Kuwabara, K., Hirota, M., Aota K., Kato, T., Chiba, A., Koizumi, Y. and Yamanaka, K. (2018). High entropy alloy member, method for producing alloy member, and product using alloy member. European patent EP 3392359A1.https://data.epo.org/publication-server/rest/v1.0/publication dates/20181024/patents/EP3392359NWA1/document.pdf (Visited on December. 18, 2020).
  • Geantă, V., Voiculescu, I., Stefănoiu, R., Chereches, T., Zecheru, T., Matache, L. and Rotariu, A. (2018). Dynamic impact behaviour of high entropy alloys used in the military domain, IOP Conf. Series: Materials Science and Engineering, 374, 012041. https://doi.org/10.1088/1757-899X/374/1/012041
  • George, E.P., Curtin, W.A. and Tasan, C.C. (2020). High entropy alloys: A focused review of mechanical properties and deformation mechanisms, Acta Materialia, 188, 435–474. https://doi.org/10.1016/j.actamat.2019.12.015
  • George, E.P., Raabe D. and Ritchie R.O. (2019). High entropy alloys. Nature Reviews Materials. 4, 515-534. https://doi.org/10.1038/s41578-019-0121-4
  • Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P. and Ritchie, R.O. (2014). A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345(6201), 1153–1158. https://doi.org/10.1126/science.1254581
  • Gondhalekar, A.A. (2019). Design and Development of Light Weight High Entropy Alloys, Master thesis, Jönköping School of Engineering, Jönköping.
  • Gorsse, S., Nguyen, M.H., Senkov, O.N. and Miracle, D.B. (2018). Database on the mechanical properties of high entropy alloys and complex concentrated alloys. Data in Brief, 21, 2664–2678. https://doi.org/10.1016/j.dib.2018.11.111
  • Gunter, E. J. Jr.(1966). Dynamic stability of rotor–bearing systems, NASA SP-113, Washington, D.C.
  • Gülen, S.C. (2019). Gas Turbines for Electric Power Generation, New York, Cambridge University Press.
  • Koželj, P., Vrtnik, S., Jelen, A., Jazbec, S., Jagličić, Z., Maiti, S., Feuerbacher, M., Steurer, W. and Dolinšek, J. (2014). Discovery of a Superconducting High-Entropy Alloy. Physical Review Letters, 113 107001-1-107001-5. https://doi.org/10.1103/PhysRevLett.113.107001
  • Kumar, M.S. (2011). Rotor dynamic analysis using ANSYS. IUTAM Symposium on Emerging Trends in Rotor Dynamics, IUTAM Bookseries, 1011, Springer, Netherlands, Dordrecht. https://doi.org/10.1007/978-94-007-0020-8_14
  • Miracle, D.B. and Senkov, O.N. (2017). A critical review of high entropy alloys and related concept. Acta Materilia, 122, 448-511. https://doi.org/10.1016/j.actamat.2016.08.081
  • Mudau T. and Field, R. M. (2018). Rotordynamic Analysis of the AM600 Turbine-Generator Shaftline. Energies, 11 (12), 3411. https://doi.org/10.3390/en11123411
  • Rao, J.S. (2011). Rotor Dynamics Methods. In: History of Rotating Machinery Dynamics, History of Mechanism and Machine Science, 20. Springer, Dordrecht.
  • Rao, S.S. (2010). The Finite Element Method in Engineering 5th Edition, Oxford: BH Elsevier.
  • Schomerus, A. (2007). Investigation of LabView as a tool for rotordynamic measurements and diagnostics, Turbomachinery Research Consortium Report TRC-RD-1-07, Texas A&M University.
  • Theory Reference for the Mechanical APDL and Mechanical Applications, ANSYS Release12.1, URL:http://www1.ansys.com/customer/content/documentation/121/ans_thry.pdfs (Visited on March. 10, 2010).
  • Thompson, M.K. and Thompson, J.M. (2017). ANSYS Mechanical APDL for Finite Element Analysis, BH Elsevier, Oxford: BH Elsevier.
  • Vance J. M. and Laudadio, F. J. (1984). Experimental measurement of Alford’s force in axial flow turbomachinery, ASME Journal of Engineering for Gas Turbines and Power, 106 (3), 585–590. https://doi.org/10.1115/1.3239610
  • Vance, J. M., and French, R. S. (1986). Measurement of torsional vibration in rotating machinery, Journal of Mechanisms, Transmissions, and Automation in Design, 108 (4), 565–577. https://doi.org/10.1115/1.3258771
  • Vance, J., Zeidan, F. and Murphy, B. (2010). Machinery Dynamics and Rotordynamics, New Jersey, John Wiley & Sons.
  • Virdi, P. S., Khan, M. S., Pereira, N., Suresh, K.V., D’Silva, R. S. (2017). Design and fabrication of major components of turbojet engine, Energy and Power, 7 (5), 130-135. doi:10.5923/j.ep.20170705.02
  • Ye, Y.F., Wang, Q., Lu, J., Liu, C.T. and Yang, Y. (2016). High-entropy alloy: challenges and prospects. Materials Today, 19(6), 349-362. https://doi.org/10.1016/j.mattod.2015.11.026
  • Youssef, K. M., Zaddach, A. J., Niu, C., Irving, D. L. and Koch, C. C. (2014). A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Materials Research Letters, 3(2), 95–99. https://doi.org/10.1080/21663831.2014.985855

Harmonic response analysis of an impeller of a gas turbine engine which modelled by using high entropy alloy materials

Year 2022, Volume: 12 Issue: 1, 54 - 67, 15.01.2022
https://doi.org/10.17714/gumusfenbil.889420

Abstract

One of the problems in a gas turbine’s impeller design is to predict the frequency-stress response caused by the harmonic force resulted from the unbalanced mass. To avoid from impeller’s flaws that may occur, designers must essentially determine the stress conditions of machinery parts under high-speed rotations. The present research explores, for the first time, the effects of modelling with high entropy alloy materials for an impeller of a gas turbine engine on harmonic responses. In order to conduct harmonic analysis, a finite element model established for an impeller of gas turbine engine by using commercial Ansys finite element package. In the finite element model, the impeller and its shaft modelled by using solid elements and beam elements, respectively. The influence of materials having different high entropy alloys on stress responses is examined for an impeller of a gas turbine engine. The results show that the highest stress exists in AlCoCrFeNi high entropy alloy material for along the sweep frequency range. In addition, the highest stress-percentage ratio is in CoCrFeNi high entropy alloy material for first resonance frequencies. Also, computations illustrate the minimum stress-percentage ratio is in AlCoCrFeMo0.1Ni high entropy alloy material for first resonance frequencies. Another finding is that the maximum percentage ratio is in CoCrFeNi high entropy alloy material for second resonance frequencies. Furthermore, the lowest percentage ratio is detected in AlCoCrFeMo0.1Ni high entropy alloy material for second resonance frequencies.

References

  • Bishop, R.E.D. (1959). The vibration of rotating shafts, Journal Mechanical Engineering Science 1(1). https://doi.org/10.1243/JMES_JOUR_1959_001_024_02
  • Christensen, R.M., (2013). The Theory of Materials Failure, Croydon- London, Oxford University Press.
  • Conway, P.L.J. (2018). Structure and Stability of New Types of Lightweight High Entropy and Compositionally Complex Alloys. Ph. D. thesis, The University of New South Wales School of Materials Science and Engineering, Sydney.
  • Efe-Ononeme, O. E., Ikpe, A. E. and Arievie, G. O. (2018). Modal Analysis of Conventional Gas Turbine Blade Materials (Udimet 500 and In738) for Industrial Applications. Journal of Engineering Technology and Applied Sciences, 3 (2), 119-133. https://doi.org/10.30931/jetas.452857
  • Erdoğan, A. and Zeytin, S. (2019). High Entropy Alloys: Principles and Alloy Design. Omer Halisdemir University Journal of Engineering Sciences, 8(2), 1160-1178. https://doi.org/10.28948/ngumuh.517876
  • Ertas, B. H. (2005). Rotordynamic force coefficients of pocket damper seals, Ph.D. thesis, Texas A&M University, Texas.
  • Fernandes, R., El-Borgi, S., Ahmed, K., Friswell, M. I. and Jamia, N. (2016). Static fracture and modal analysis simulation of a gas turbine compressor blade and bladed disk system. Advanced Modeling and Simulation in Engineering Sciences, 3 (30), 1-23. https://doi.org/10.1186/s40323-016-0083-7
  • Fujieda, T., Kuwabara, K., Hirota, M., Aota K., Kato, T., Chiba, A., Koizumi, Y. and Yamanaka, K. (2018). High entropy alloy member, method for producing alloy member, and product using alloy member. European patent EP 3392359A1.https://data.epo.org/publication-server/rest/v1.0/publication dates/20181024/patents/EP3392359NWA1/document.pdf (Visited on December. 18, 2020).
  • Geantă, V., Voiculescu, I., Stefănoiu, R., Chereches, T., Zecheru, T., Matache, L. and Rotariu, A. (2018). Dynamic impact behaviour of high entropy alloys used in the military domain, IOP Conf. Series: Materials Science and Engineering, 374, 012041. https://doi.org/10.1088/1757-899X/374/1/012041
  • George, E.P., Curtin, W.A. and Tasan, C.C. (2020). High entropy alloys: A focused review of mechanical properties and deformation mechanisms, Acta Materialia, 188, 435–474. https://doi.org/10.1016/j.actamat.2019.12.015
  • George, E.P., Raabe D. and Ritchie R.O. (2019). High entropy alloys. Nature Reviews Materials. 4, 515-534. https://doi.org/10.1038/s41578-019-0121-4
  • Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P. and Ritchie, R.O. (2014). A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345(6201), 1153–1158. https://doi.org/10.1126/science.1254581
  • Gondhalekar, A.A. (2019). Design and Development of Light Weight High Entropy Alloys, Master thesis, Jönköping School of Engineering, Jönköping.
  • Gorsse, S., Nguyen, M.H., Senkov, O.N. and Miracle, D.B. (2018). Database on the mechanical properties of high entropy alloys and complex concentrated alloys. Data in Brief, 21, 2664–2678. https://doi.org/10.1016/j.dib.2018.11.111
  • Gunter, E. J. Jr.(1966). Dynamic stability of rotor–bearing systems, NASA SP-113, Washington, D.C.
  • Gülen, S.C. (2019). Gas Turbines for Electric Power Generation, New York, Cambridge University Press.
  • Koželj, P., Vrtnik, S., Jelen, A., Jazbec, S., Jagličić, Z., Maiti, S., Feuerbacher, M., Steurer, W. and Dolinšek, J. (2014). Discovery of a Superconducting High-Entropy Alloy. Physical Review Letters, 113 107001-1-107001-5. https://doi.org/10.1103/PhysRevLett.113.107001
  • Kumar, M.S. (2011). Rotor dynamic analysis using ANSYS. IUTAM Symposium on Emerging Trends in Rotor Dynamics, IUTAM Bookseries, 1011, Springer, Netherlands, Dordrecht. https://doi.org/10.1007/978-94-007-0020-8_14
  • Miracle, D.B. and Senkov, O.N. (2017). A critical review of high entropy alloys and related concept. Acta Materilia, 122, 448-511. https://doi.org/10.1016/j.actamat.2016.08.081
  • Mudau T. and Field, R. M. (2018). Rotordynamic Analysis of the AM600 Turbine-Generator Shaftline. Energies, 11 (12), 3411. https://doi.org/10.3390/en11123411
  • Rao, J.S. (2011). Rotor Dynamics Methods. In: History of Rotating Machinery Dynamics, History of Mechanism and Machine Science, 20. Springer, Dordrecht.
  • Rao, S.S. (2010). The Finite Element Method in Engineering 5th Edition, Oxford: BH Elsevier.
  • Schomerus, A. (2007). Investigation of LabView as a tool for rotordynamic measurements and diagnostics, Turbomachinery Research Consortium Report TRC-RD-1-07, Texas A&M University.
  • Theory Reference for the Mechanical APDL and Mechanical Applications, ANSYS Release12.1, URL:http://www1.ansys.com/customer/content/documentation/121/ans_thry.pdfs (Visited on March. 10, 2010).
  • Thompson, M.K. and Thompson, J.M. (2017). ANSYS Mechanical APDL for Finite Element Analysis, BH Elsevier, Oxford: BH Elsevier.
  • Vance J. M. and Laudadio, F. J. (1984). Experimental measurement of Alford’s force in axial flow turbomachinery, ASME Journal of Engineering for Gas Turbines and Power, 106 (3), 585–590. https://doi.org/10.1115/1.3239610
  • Vance, J. M., and French, R. S. (1986). Measurement of torsional vibration in rotating machinery, Journal of Mechanisms, Transmissions, and Automation in Design, 108 (4), 565–577. https://doi.org/10.1115/1.3258771
  • Vance, J., Zeidan, F. and Murphy, B. (2010). Machinery Dynamics and Rotordynamics, New Jersey, John Wiley & Sons.
  • Virdi, P. S., Khan, M. S., Pereira, N., Suresh, K.V., D’Silva, R. S. (2017). Design and fabrication of major components of turbojet engine, Energy and Power, 7 (5), 130-135. doi:10.5923/j.ep.20170705.02
  • Ye, Y.F., Wang, Q., Lu, J., Liu, C.T. and Yang, Y. (2016). High-entropy alloy: challenges and prospects. Materials Today, 19(6), 349-362. https://doi.org/10.1016/j.mattod.2015.11.026
  • Youssef, K. M., Zaddach, A. J., Niu, C., Irving, D. L. and Koch, C. C. (2014). A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Materials Research Letters, 3(2), 95–99. https://doi.org/10.1080/21663831.2014.985855
There are 31 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Serkan Güler 0000-0002-1552-3432

Publication Date January 15, 2022
Submission Date March 2, 2021
Acceptance Date October 27, 2021
Published in Issue Year 2022 Volume: 12 Issue: 1

Cite

APA Güler, S. (2022). Harmonic response analysis of an impeller of a gas turbine engine which modelled by using high entropy alloy materials. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(1), 54-67. https://doi.org/10.17714/gumusfenbil.889420