Research Article
BibTex RIS Cite

Akış yönü ve hızının su soğutmalı ısı alıcısı performansına etkisinin nümerik incelenmesi

Year 2022, Volume: 12 Issue: 1, 151 - 163, 15.01.2022
https://doi.org/10.17714/gumusfenbil.910468

Abstract

Elektronik bileşenlerin en önemli sorunları, yüksek güç tüketimi ve kısa ömürdür. Bu çalışmanın amacı, su soğutmalı ısı alıcının çalışma sürecini sayısal olarak modellemek ve bu sayede en etkili tasarımı elde etmektir. Bu kapsamda akış ve ısı transferini simüle etmek için suyun 0.25 m/s, 0.5 m/s ve 1 m/s hızlarında ve sabit hava hızında (6 m/s) farklı geçişlere sahip dört farklı geometri (Tip-A, Tip-B, Tip-C, Tip-D) dizayn edilmiştir. Sonuçlar, sıcaklık ve basınç konturları, akım çizgileri ve basınç farkı, çıkış sıcaklığı, sıcaklık farkı, havaya olan ısı transferi ve güç tüketiminin Reynolds ile değişimi grafiklerine bağlı olarak değerlendirilmiştir. Tüm analizlerde Reynolds sayısının artışıyla birlikte basınç farkı, çıkış sıcaklığı, güç tüketimi ve havaya olan ısı transferi artmıştır. Tüm modellerde suyun çıkış sıcaklıkları birbirine çok yakın olup Re=2500 için 63-65 °C, Re=5000 için 70-72 °C ve Re=10000 için 74-76 °C aralığındadır. Tüm modeller arasında Re=2500 için 63.40 °C, Re=5000 için 70.77 °C ve Re=10000 için 74.85 °C değerleriyle en düşük çıkış sıcaklığına Tip-A sahiptir. Ayrıca Tip-A, Re=2500 için 1346 W, Re=5000 için 1500 W ve Re=10000 için 1675 W değerleri ile havaya olan ısı transferi açısından diğer modellere göre daha iyi performans göstermiştir. En yüksek basınç farkı, 10000 Reynolds sayısında yaklaşık olarak 3500 Pa değeriyle Tip-A geometrisinde elde edilmiştir. Sonuçlar bütünüyle değerlendirildiğinde, Tip-B'nin ısı transferi, pompa gücü ve giriş-çıkış pozisyonları açısından kullanıma en uygun model olduğu sonucuna varılmıştır.

References

  • Adams, T. M., Abdel-Khalik, S. I., Jeter, S. M. and Qureshi, Z. H. (1998). An experimental investigation of single-phase forced convection in microchannels. International Journal of Heat and Mass Transfer, 41(6), 851–857. https://doi.org/https://doi.org/10.1016/S0017-9310(97)00180-4
  • Choi, J. T., Kwon, O. K. and Cha, D. A. (2011). A numerical study of the heat transfer and fluid flow of micro-channeled water block for computer CPU cooling. Journal of Mechanical Science and Technology, 25(10), 2657. https://doi.org/10.1007/s12206-011-0616-4
  • Chung, Y. M. and Luo, K. H. (2002). Unsteady heat transfer analysis of an impinging jet. Journal of Heat Transfer, 124(6), 1039–1048. https://doi.org/10.1115/1.1469522
  • Conrad, M., Diatlov, A. and De Doncker, R. W. (2015). Purpose, potential and realization of chip-attached micro-pin fin heat sinks. Microelectronics Reliability, 55(9), 1992–1996. https://doi.org/https://doi.org/10.1016/j.microrel.2015.07.007
  • Cova, P., Delmonte, N., Giuliani, F., Citterio, M., Latorre, S., Lazzaroni, M. and Lanza, A. (2013). Thermal optimization of water heat sink for power converters with tight thermal constraints. Microelectronics Reliability, 53(9), 1760–1765. https://doi.org/https://doi.org/10.1016/j.microrel.2013.07.035
  • Fluent Incorporated. (2017). Fluent User’s Guide. Erişim adresi http://users.abo.fi/rzevenho/ansys%20fluent%2018%20tutorial%20guide.pdf
  • Hetsroni, G., Mosyak, A., Pogrebnyak, E. and Yarin, L. P. (2005). Fluid flow in micro-channels. International Journal of Heatnand Mass Transfer, 48(10), 1982–1998. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.019
  • Jajja, S. A., Ali, W., Ali, H. M. and Ali, A. M. (2014). Water cooled minichannel heat sinks for microprocessor cooling: Effect of fin spacing. Applied Thermal Engineering, 64(1), 76–82. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2013.12.007
  • Kim, K.-S., Won, M.-H., Kim, J.-W. and Back, B.-J. (2003). Heat pipe cooling technology for desktop PC CPU. Applied Thermal Engineering, 23(9), 1137–1144. https://doi.org/https://doi.org/10.1016/S1359-4311(03)00044-9
  • Knight, R. W., Hall, D. J., Goodling, J. S. and Jaeger, R. C. (1992). Heat sink optimization with application to microchannels. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 15(5), 832–842. https://doi.org/10.1109/33.180049
  • Naphon, P., Klangchart, S. and Wongwises, S. (2009). Numerical investigation on the heat transfer and flow in the mini-fin heat sink for CPU. International Communications in Heat and Mass Transfer, 36(8), 834–840. https://doi.org/https://doi.org/10.1016/j.icheatmasstransfer.2009.06.010
  • Naphon, P. and Wiriyasart, S. (2009). Liquid cooling in the mini-rectangular fin heat sink with and without thermoelectric for CPU. International Communications in Heat and Mass Transfer, 36(2), 166–171. https://doi.org/https://doi.org/10.1016/j.icheatmasstransfer.2008.10.002
  • Nishino, K., Samada, M., Kasuya, K. and Torii, K. (1996). Turbulence Characteristics in the Stagnation Region of an Axisymmetric Impinging Jet Flow. Transactions of the Japan Society of Mechanical Engineers Series B, 62(594), 474–482. https://doi.org/10.1299/kikaib.62.474
  • Pastukhov, V. G. and Maydanik, Y. F. (2006). Low-noise cooling system for pc on the base of loop heat pipes. Twenty-Second Annual IEEE Semiconductor Thermal Measurement And Management Symposium, 95–101. https://doi.org/10.1109/STHERM.2006.1625212
  • Réti, F. (1999). Liquid cooling of electronic devices by single-phase convection (Wiley —Interscience Publication, 1999, New York — Chichester — Weinheim — Brisbane — Singapore — Toronto) Frank P. Incropera. Journal of Thermal Analysis and Calorimetry, 58(3), 749. https://doi.org/10.1023/A:1010174209771
  • Tiselj, I., Hetsroni, G., Mavko, B., Mosyak, A., Pogrebnyak, E. and Segal, Z. (2004). Effect of axial conduction on the heat transfer in micro-channels. International Journal of Heat and Mass Transfer, 47(12), 2551–2565. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2004.01.008
  • Toh, K. C., Chen, X. Y. and Chai, J. C. (2002). Numerical computation of fluid flow and heat transfer in microchannels. International Journal of Heat and Mass Transfer, 45(26), 5133–5141. https://doi.org/https://doi.org/10.1016/S0017-9310(02)00223-5
  • Tuckerman, D. B. and Pease, R. F. W. (1981). High-performance heat sinking for VLSI. IEEE Electron Device Letters, 2(5), 126–129. https://doi.org/10.1109/EDL.1981.25367
  • Wang, B. X. and Peng, X. F. (1994). Experimental investigation on liquid forced-convection heat transfer through microchannels. International Journal of Heat and Mass Transfer, 37, 73–82. https://doi.org/https://doi.org/10.1016/0017-9310(94)90011-6
  • Wang, Y. and Vafai, K. (2000). An experimental investigation of the thermal performance of an asymmetrical flat plate heat pipe. International Journal of Heat and Mass Transfer, 43(15), 2657–2668. https://doi.org/https://doi.org/10.1016/S0017-9310(99)00300-2
  • Wei, X. and Joshi, Y. (2003). Optimization study of stacked micro-channel heat sinks for micro-electronic cooling. IEEE Transactions on Components and Packaging Technologies, 26(1), 55–61. https://doi.org/10.1109/TCAPT.2003.811473
  • Xie, X. L., Tao, W. Q. and He, Y. L. (2006). Numerical study of turbulent heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink. Journal of Electronic Packaging, 129(3), 247–255. https://doi.org/10.1115/1.2753887
  • Zhao, Z. and Avedisian, C. T. (1997). Enhancing forced air convection heat transfer from an array of parallel plate fins using a heat pipe. International Journal of Heat and Mass Transfer, 40(13), 3135–3147. https://doi.org/https://doi.org/10.1016/S0017-9310(96)00348-1

Numerical investigation of the effect of flow circulation pattern and velocity on the performance of water-cooled heat sink

Year 2022, Volume: 12 Issue: 1, 151 - 163, 15.01.2022
https://doi.org/10.17714/gumusfenbil.910468

Abstract

The most critical problems of electronic components are the high power consumption and lesser life. This paper aims to numerically model the working process of the water-cooled heat sink to obtain the most effective design. In this context, four types of configurations with different passes (Type-A, Type-B, Type-C, Type-D) were designed at different water velocities, which were 0.25 m/s, 0.5 m/s, and 1 m/s with constant air velocity (6 m/s) to simulate fluid flow and the heat transfer. Results were evaluated as temperature and pressure contours, velocity streamlines, and the graphics of pressure difference, outlet temperature, temperature difference, heat transfer rate to air, and power consumption in relation to Reynolds number. Results showed that pressure difference, outlet temperature, power consumption, and heat transfer rate to air increased by increasing Reynolds number in all analyses. In all configurations, the water outlet temperatures were very close to each other, in the range of 63-65 °C for Re=2500, 70-72 °C for Re=5000, and 74-76 °C for Re=10000. Among all configurations, Type-A has the minimum outlet temperature with the value of 63.40 °C for Re=2500, 70.77 °C for Re=5000, and 74.85 °C for Re=10000. Also, Type-A showed better performance than other models in terms of heat transfer rate to air with the value of 1346 W for Re=2500, 1500 W for Re=5000, and 1675 W for Re=10000. The maximum pressure difference was obtained in Type-A geometry with the value of nearly 3500 Pa at a Reynolds number value of 10000. When the results were evaluated in full scope, it was concluded that Type-B was the most suitable model for use in terms of heat transfer, pump power, and inlet-outlet positions.

References

  • Adams, T. M., Abdel-Khalik, S. I., Jeter, S. M. and Qureshi, Z. H. (1998). An experimental investigation of single-phase forced convection in microchannels. International Journal of Heat and Mass Transfer, 41(6), 851–857. https://doi.org/https://doi.org/10.1016/S0017-9310(97)00180-4
  • Choi, J. T., Kwon, O. K. and Cha, D. A. (2011). A numerical study of the heat transfer and fluid flow of micro-channeled water block for computer CPU cooling. Journal of Mechanical Science and Technology, 25(10), 2657. https://doi.org/10.1007/s12206-011-0616-4
  • Chung, Y. M. and Luo, K. H. (2002). Unsteady heat transfer analysis of an impinging jet. Journal of Heat Transfer, 124(6), 1039–1048. https://doi.org/10.1115/1.1469522
  • Conrad, M., Diatlov, A. and De Doncker, R. W. (2015). Purpose, potential and realization of chip-attached micro-pin fin heat sinks. Microelectronics Reliability, 55(9), 1992–1996. https://doi.org/https://doi.org/10.1016/j.microrel.2015.07.007
  • Cova, P., Delmonte, N., Giuliani, F., Citterio, M., Latorre, S., Lazzaroni, M. and Lanza, A. (2013). Thermal optimization of water heat sink for power converters with tight thermal constraints. Microelectronics Reliability, 53(9), 1760–1765. https://doi.org/https://doi.org/10.1016/j.microrel.2013.07.035
  • Fluent Incorporated. (2017). Fluent User’s Guide. Erişim adresi http://users.abo.fi/rzevenho/ansys%20fluent%2018%20tutorial%20guide.pdf
  • Hetsroni, G., Mosyak, A., Pogrebnyak, E. and Yarin, L. P. (2005). Fluid flow in micro-channels. International Journal of Heatnand Mass Transfer, 48(10), 1982–1998. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.019
  • Jajja, S. A., Ali, W., Ali, H. M. and Ali, A. M. (2014). Water cooled minichannel heat sinks for microprocessor cooling: Effect of fin spacing. Applied Thermal Engineering, 64(1), 76–82. https://doi.org/https://doi.org/10.1016/j.applthermaleng.2013.12.007
  • Kim, K.-S., Won, M.-H., Kim, J.-W. and Back, B.-J. (2003). Heat pipe cooling technology for desktop PC CPU. Applied Thermal Engineering, 23(9), 1137–1144. https://doi.org/https://doi.org/10.1016/S1359-4311(03)00044-9
  • Knight, R. W., Hall, D. J., Goodling, J. S. and Jaeger, R. C. (1992). Heat sink optimization with application to microchannels. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 15(5), 832–842. https://doi.org/10.1109/33.180049
  • Naphon, P., Klangchart, S. and Wongwises, S. (2009). Numerical investigation on the heat transfer and flow in the mini-fin heat sink for CPU. International Communications in Heat and Mass Transfer, 36(8), 834–840. https://doi.org/https://doi.org/10.1016/j.icheatmasstransfer.2009.06.010
  • Naphon, P. and Wiriyasart, S. (2009). Liquid cooling in the mini-rectangular fin heat sink with and without thermoelectric for CPU. International Communications in Heat and Mass Transfer, 36(2), 166–171. https://doi.org/https://doi.org/10.1016/j.icheatmasstransfer.2008.10.002
  • Nishino, K., Samada, M., Kasuya, K. and Torii, K. (1996). Turbulence Characteristics in the Stagnation Region of an Axisymmetric Impinging Jet Flow. Transactions of the Japan Society of Mechanical Engineers Series B, 62(594), 474–482. https://doi.org/10.1299/kikaib.62.474
  • Pastukhov, V. G. and Maydanik, Y. F. (2006). Low-noise cooling system for pc on the base of loop heat pipes. Twenty-Second Annual IEEE Semiconductor Thermal Measurement And Management Symposium, 95–101. https://doi.org/10.1109/STHERM.2006.1625212
  • Réti, F. (1999). Liquid cooling of electronic devices by single-phase convection (Wiley —Interscience Publication, 1999, New York — Chichester — Weinheim — Brisbane — Singapore — Toronto) Frank P. Incropera. Journal of Thermal Analysis and Calorimetry, 58(3), 749. https://doi.org/10.1023/A:1010174209771
  • Tiselj, I., Hetsroni, G., Mavko, B., Mosyak, A., Pogrebnyak, E. and Segal, Z. (2004). Effect of axial conduction on the heat transfer in micro-channels. International Journal of Heat and Mass Transfer, 47(12), 2551–2565. https://doi.org/https://doi.org/10.1016/j.ijheatmasstransfer.2004.01.008
  • Toh, K. C., Chen, X. Y. and Chai, J. C. (2002). Numerical computation of fluid flow and heat transfer in microchannels. International Journal of Heat and Mass Transfer, 45(26), 5133–5141. https://doi.org/https://doi.org/10.1016/S0017-9310(02)00223-5
  • Tuckerman, D. B. and Pease, R. F. W. (1981). High-performance heat sinking for VLSI. IEEE Electron Device Letters, 2(5), 126–129. https://doi.org/10.1109/EDL.1981.25367
  • Wang, B. X. and Peng, X. F. (1994). Experimental investigation on liquid forced-convection heat transfer through microchannels. International Journal of Heat and Mass Transfer, 37, 73–82. https://doi.org/https://doi.org/10.1016/0017-9310(94)90011-6
  • Wang, Y. and Vafai, K. (2000). An experimental investigation of the thermal performance of an asymmetrical flat plate heat pipe. International Journal of Heat and Mass Transfer, 43(15), 2657–2668. https://doi.org/https://doi.org/10.1016/S0017-9310(99)00300-2
  • Wei, X. and Joshi, Y. (2003). Optimization study of stacked micro-channel heat sinks for micro-electronic cooling. IEEE Transactions on Components and Packaging Technologies, 26(1), 55–61. https://doi.org/10.1109/TCAPT.2003.811473
  • Xie, X. L., Tao, W. Q. and He, Y. L. (2006). Numerical study of turbulent heat transfer and pressure drop characteristics in a water-cooled minichannel heat sink. Journal of Electronic Packaging, 129(3), 247–255. https://doi.org/10.1115/1.2753887
  • Zhao, Z. and Avedisian, C. T. (1997). Enhancing forced air convection heat transfer from an array of parallel plate fins using a heat pipe. International Journal of Heat and Mass Transfer, 40(13), 3135–3147. https://doi.org/https://doi.org/10.1016/S0017-9310(96)00348-1
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Seyda Özbektaş 0000-0001-7399-733X

Bilal Sungur 0000-0002-7320-1490

Bahattin Topaloğlu 0000-0002-7095-4913

Publication Date January 15, 2022
Submission Date April 6, 2021
Acceptance Date November 1, 2021
Published in Issue Year 2022 Volume: 12 Issue: 1

Cite

APA Özbektaş, S., Sungur, B., & Topaloğlu, B. (2022). Numerical investigation of the effect of flow circulation pattern and velocity on the performance of water-cooled heat sink. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(1), 151-163. https://doi.org/10.17714/gumusfenbil.910468