Research Article
BibTex RIS Cite

Basınçlı döküm prosesinde iki farklı soğutma kanallı kalıpların döküm-kalıp arayüzey ısı transfer katsayısının nümerik olarak incelenmesi

Year 2022, Volume: 12 Issue: 1, 283 - 300, 15.01.2022
https://doi.org/10.17714/gumusfenbil.987451

Abstract

Basınçlı dökümde, döküm-kalıp arayüzey ısı transfer katsayısı (AITK) kalıp ve dökümü yapılan parçada meydana gelen yapısal değişimler ile katılaşma hızını etkileyen önemli unsurdur. AITK, döküm-kalıp arasında meydana gelen ısı transferi, katılaşma hızı, ergiyik metal ve kalıp sıcaklıkları, döküm ve kalıp malzemesi gibi birçok faktörlerden bağlı olarak değişim gösterir. Bu çalışmada, basınçlı döküm prosesinde klasik soğutma kanallı metal kalıp ile özgün soğutma kanallı metal kalıp için döküm-kalıp AITK’nın zamana bağlı değişimi nümerik olarak incelenmiştir. Basınçlı döküm prosesinde; döküm malzemesi olarak Al6061 alüminyum alaşımı kullanılacak metal kalıplar için AITK, sıcaklık dağılımı ve ısı transferi bakımından karşılaştırılması yapılmıştır. 0.5-10 s zaman aralığında yapılan analizlerde bu kalıplar ile ergiyik metal arasındaki AITK ve sıcaklıklar hesaplanmıştır. Özgün soğutma kanallı kalıpta klasik soğutma kanallı kalıba göre 1.33 kat daha iyi sıcaklık düşüşü gerçekleşmiştir. Özgün soğutma kanallı kalıpta klasik soğutma kanallı kalıba kıyasla 2.23 kat daha iyi ısı transfer katsayısı olduğu hesaplanmıştır. Sonuç olarak; özgün soğutma kanallı kalıpta AITK, sıcaklık dağılımı ve ısı transferinin daha iyi olduğu gözlemlenmiştir.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • Akar N., Sahin H.M., Yalçın N. and Kocatepe K. (2008). Experimental study on the effect of liquid metal superheat and casting height on interfacial heat transfer coefficient. Experimental Heat Transfer, 21(1),83–98. https://doi.org/10.1080/08916150701647785
  • Akar N., Boran K. ve Hozikliğil B. (2013). Kalıp sıcaklığının döküm parça-kalıp arayüzey ısı transfer katsayısı üzerine etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 28(2), 275-282.
  • Arunkumar, S., Rao, K. S., and Kumar, T. P. (2008). Spatial variation of heat flux at the metal–mold interface due to mold filling effects in gravity die-casting. International Journal of Heat and Mass Transfer, 51(11-12), 2676-2685. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.020
  • Bouchard D., Leboeuf S., Nadeau J.P., Guthrie I.L.R. and Mihaiela I. (2009). Dynamic wetting and heat transfer at the initiation of aluminum solidification on copper substrates. Journal of Materials Science, 44(8), 1923-1933. https://doi.org/10.1007/s10853-008-2888-3
  • Chen, Z.W. (2003). Skin solidification during high pressure die casting of Al-11Si-2Cu-1Fe alloy. Materials Science and Engineering: A, 348(1-2), 145-153. https://doi.org/10.1016/S0921-5093(02)00747-5 Christy T.V., Murugan N. and Kumar S. (2010). A comparative study on the microstructures and mechanical properties of Al 6061 alloy and the MMC Al 6061/TiB2/12p. Journal of Minerals&Materials Characterization& Engineering, 9(1), 57-65.
  • Coates, B., and Argyropoulos, S. A. (2007). The effects of surface roughness and metal temperature on the heat-transfer coefficient at the metal mold interface. Metallurgical and Materials Transactions B, 38(2), 243-255. https://doi.org/10.1007/s11663-007-9020-y
  • Dong Y., Bu K., Dou Y. and Zhang D. (2011). Determination of interfacial heat-transfer coefficient during investment casting process of single-crystal blades. Journal of Materials Processing Technology, 211(12), 2123-2131. https://doi.org/10.1016/j.jmatprotec.2011.07.012
  • Dour, G., Dargusch, M., Davidson, C. and Nef, A. (2005). Development of a non-intrusive heat transfer coefficient gauge and its application to high pressure die casting effect of the process parameters. Journal of Materials Processing Technology, 169(2), 223–233. https://doi.org/10.1016/j.jmatprotec.2005.03.026
  • Durat M., Nart E., Kayıkcı R. ve Özsert İ. (2006). Metal döküm kalıpların sonlu elemanlar yöntemiyle tekrarlı termal analizi. Timak-Tasarım İmalat Analiz Kongresi, (ss 549-557). Balıkesir. Erişim adresi: http://timak.balikesir.edu.tr/pdf/%20549.pdf
  • Fluent M. (2018). Chapter 17: Modeling Solidification and Melting; ANSYS, Inc.: Canonsburg, PA, USA. Erişim adresi: https://mae.iith.ac.in/ansys/files/scientific/fluent_tut/theoryguide_Solidification%20and%20melting.pdf
  • Gafur M.A., Haque M.N. and Prabhu K.N. (2003). Effect of chill thickness and superheat on casting/chill ınterfacial heat transfer during solidification of commercially pure aluminum. Journal of Materials Processing Technology, 133(3), 257-265. https://doi.org/10.1016/S0924-0136(02)00459-4
  • Garza H.A. and Miller R.A. (2003). The effects of heat released during fill on the deflections of die casting dies. Journal of Materials Processing Technology, 142(3), 648–658. https://doi.org/10.1016/S0924-0136(03)00685-X
  • Gozlan E. and Bamberger M. (1987). Heat flow and solidification in a metal mold source. International Journal of Materials Research, 78(9), 677-682. https://doi.org/10.1515/ijmr-1987-780911
  • Hallam C.P. and Griffiths W.D. (2004). A model of the interfacial heat-transfer coefficient for the aluminum gravity die-casting process. Metallurgical and Materials Transactions B, 35(4), 721-733. https://doi.org/10.1007/s11663-004-0012-x
  • Hamasaiid A., Dour G., Loulou T. and Dargusch M.S. (2010). A predictive model for the evolution of the thermal conductance at the casting–die interfaces in high pressure die casting. International Journal of Thermal Sciences, 49(2), 365–372. https://doi.org/10.1016/j.ijthermalsci.2009.07.014
  • Ho, K., and Pehlke, R. D. (1985). Metal-mold interfacial heat transfer. Metallurgical Transactions B, 16(3), 585-594.
  • Ilkhchy, A. F., Jabbari, M., and Davami, P. (2012). Effect of pressure on heat transfer coefficient at the metal/mold interface of A356 aluminum alloy. International Communications in Heat and Mass Transfer, 39(5), 705-712. https://doi.org/10.1016/j.icheatmasstransfer.2012.04.001
  • Ipek O. ve Koru M. (2011). Yüksek basınçlı döküm prosesinde kalıp sıcaklığına bağlı olarak döküm-kalıp arayüzeyinde oluşan termal temas direncinin belirlenmesi. Isı Bilimi ve Tekniği Dergisi, 31(1), 45-57. Looser R., Vivar M. and Everett V. (2014). Spectral characterization and long-term performance analysis of various commercial heat transfer fluids (HTF) as direct-absorption filters for CPV-T beam-splitting applications, Applied Energy, 113, 1496–1511. https://doi.org/10.1016/j.apenergy.2013.09.001
  • Loulou, T., Artyukhin, E. A. and Bardon, J. P. (1999). Estimation of thermal contract resistance during the first stages of metal solidification process: II—experimental setup and results. International Journal of Heat and Mass Transfer, 42(12), 2129-2142 https://doi.org/10.1016/S0017-9310(98)00338-X
  • Michel F., Louchez P. R., Samuel F. H. (1995). Heat transfer coefficient during solidification of al-si alloys: effects of mold temperature, coating type and thickness. Transactions of The American Foundrymen's Society, 103, 275-283.
  • Reddy, A. V. and Beckermann, C. (1993). Measurements of metal-mold interfacial heat transfer coefficients during solidification of Sn and Sn-Pb alloys. Experimental Heat Transfer an International Journal, 6(2), 111-129. https://doi.org/10.1080/08916159308946449
  • Sabau A.S. and Wu Z. (2007). Evaluation of a heat flux sensor for spray cooling for the die casting processes. Journal of Materials Processing Technology, 182(1-3), 312-318. https://doi.org/10.1016/j.jmatprotec.2006.07.039
  • Sahin H.M., Kocatepe K., Kayıkçı R. and Akar N. (2006). Determination of unidirectional heat transfer coefficient during unsteady-state solidification at metal casting chill interface. Energy Conversion and Management, 47(1), 19-34. https://doi.org/10.1016/j.enconman.2005.03.021
  • Santos C.A., Siqueira C.A., Garcia A. and Quaresma J.M.V. and Spim J.A. (2004). Metal/Mold heat transfer coefficients during horizontal and vertical unsteady-state solidification of Al-Cu and Sn-Pb alloys. Inverse Problems in Science and Engineering, 12(3), 279-296. https://doi.org/10.1080/10682760310001598706
  • Silva, J. N., Moutinho, D. J., Moreira, A. L., Ferreira, I. L., and Rocha, O. L. (2011). Determination of heat transfer coefficients at metal–mold interface during horizontal unsteady-state directional solidification of Sn–Pb alloys. Materials Chemistry and Physics, 130(1-2), 179-185. https://doi.org/10.1016/j.matchemphys.2011.06.032
  • Srinivasan M.N. (1982). Heat transfer coefficients at the casting-mold interface during solidification of flake graphite cast iron in metallic moulds. Indian Journal of Technology, 20 (4), 123-129.
  • Taha M.A., El-Mahallawy N.A., El-Mestekawi M.T. and Hassan A.A. (2001). Estimation of air gap and heat transfer coefficient at different faces of Al and Al-Si casting solidifying in permanent mold. Materials Science and Technology, 17(9), 1093- 1101. https://doi.org/10.1179/026708301101511004
  • Zhang B., Maijer D.M. and Cockcroft S.L. (2007). Development of a 3D thermal model of the low-pressure die-cast (lpdc) process of Al356 aluminum alloy wheels. Materials Science and Engineering: A, 464(1-2), 295-305.

Numerical investigation of casting-mold interfacial heat transfer coefficient of molds with two different cooling channels in pressure casting process

Year 2022, Volume: 12 Issue: 1, 283 - 300, 15.01.2022
https://doi.org/10.17714/gumusfenbil.987451

Abstract

In the pressure casting, the casting-mold interface heat transfer coefficient (IHTC) is a significant element affecting the solidification rate with the structural changes occurring in the mold and the part being cast. IHTC varies depending on many factors such as heat transfer between molten metal and mold, solidification rate, casting and mold temperatures, casting, and mold material. In this study, the time-dependent variety of IHTC of casting for a conventional cooling channel metal mold and an original cooling channel metal mold in the pressure casting process was numerically investigated. In the pressure casting process, IHTC for metal molds using Al6061 aluminum alloy as casting material was compared in terms of temperature distribution and heat transfer. The IHTC and temperatures between these molds and the molten metal were calculated in the analyzes made in the 0.5-10 s time interval. In the original cooling channel mold, the temperature drop was 1.33 times better than the conventional cooling channel mold. It has been calculated that the original cooling channel mold has a 2.23 times better heat transfer coefficient compared to the conventional cooling channel mold. As a result, it was observed that IHTC, temperature distribution and heat transfer were better in the original cooling channel mold.

Project Number

-

References

  • Akar N., Sahin H.M., Yalçın N. and Kocatepe K. (2008). Experimental study on the effect of liquid metal superheat and casting height on interfacial heat transfer coefficient. Experimental Heat Transfer, 21(1),83–98. https://doi.org/10.1080/08916150701647785
  • Akar N., Boran K. ve Hozikliğil B. (2013). Kalıp sıcaklığının döküm parça-kalıp arayüzey ısı transfer katsayısı üzerine etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 28(2), 275-282.
  • Arunkumar, S., Rao, K. S., and Kumar, T. P. (2008). Spatial variation of heat flux at the metal–mold interface due to mold filling effects in gravity die-casting. International Journal of Heat and Mass Transfer, 51(11-12), 2676-2685. https://doi.org/10.1016/j.ijheatmasstransfer.2007.10.020
  • Bouchard D., Leboeuf S., Nadeau J.P., Guthrie I.L.R. and Mihaiela I. (2009). Dynamic wetting and heat transfer at the initiation of aluminum solidification on copper substrates. Journal of Materials Science, 44(8), 1923-1933. https://doi.org/10.1007/s10853-008-2888-3
  • Chen, Z.W. (2003). Skin solidification during high pressure die casting of Al-11Si-2Cu-1Fe alloy. Materials Science and Engineering: A, 348(1-2), 145-153. https://doi.org/10.1016/S0921-5093(02)00747-5 Christy T.V., Murugan N. and Kumar S. (2010). A comparative study on the microstructures and mechanical properties of Al 6061 alloy and the MMC Al 6061/TiB2/12p. Journal of Minerals&Materials Characterization& Engineering, 9(1), 57-65.
  • Coates, B., and Argyropoulos, S. A. (2007). The effects of surface roughness and metal temperature on the heat-transfer coefficient at the metal mold interface. Metallurgical and Materials Transactions B, 38(2), 243-255. https://doi.org/10.1007/s11663-007-9020-y
  • Dong Y., Bu K., Dou Y. and Zhang D. (2011). Determination of interfacial heat-transfer coefficient during investment casting process of single-crystal blades. Journal of Materials Processing Technology, 211(12), 2123-2131. https://doi.org/10.1016/j.jmatprotec.2011.07.012
  • Dour, G., Dargusch, M., Davidson, C. and Nef, A. (2005). Development of a non-intrusive heat transfer coefficient gauge and its application to high pressure die casting effect of the process parameters. Journal of Materials Processing Technology, 169(2), 223–233. https://doi.org/10.1016/j.jmatprotec.2005.03.026
  • Durat M., Nart E., Kayıkcı R. ve Özsert İ. (2006). Metal döküm kalıpların sonlu elemanlar yöntemiyle tekrarlı termal analizi. Timak-Tasarım İmalat Analiz Kongresi, (ss 549-557). Balıkesir. Erişim adresi: http://timak.balikesir.edu.tr/pdf/%20549.pdf
  • Fluent M. (2018). Chapter 17: Modeling Solidification and Melting; ANSYS, Inc.: Canonsburg, PA, USA. Erişim adresi: https://mae.iith.ac.in/ansys/files/scientific/fluent_tut/theoryguide_Solidification%20and%20melting.pdf
  • Gafur M.A., Haque M.N. and Prabhu K.N. (2003). Effect of chill thickness and superheat on casting/chill ınterfacial heat transfer during solidification of commercially pure aluminum. Journal of Materials Processing Technology, 133(3), 257-265. https://doi.org/10.1016/S0924-0136(02)00459-4
  • Garza H.A. and Miller R.A. (2003). The effects of heat released during fill on the deflections of die casting dies. Journal of Materials Processing Technology, 142(3), 648–658. https://doi.org/10.1016/S0924-0136(03)00685-X
  • Gozlan E. and Bamberger M. (1987). Heat flow and solidification in a metal mold source. International Journal of Materials Research, 78(9), 677-682. https://doi.org/10.1515/ijmr-1987-780911
  • Hallam C.P. and Griffiths W.D. (2004). A model of the interfacial heat-transfer coefficient for the aluminum gravity die-casting process. Metallurgical and Materials Transactions B, 35(4), 721-733. https://doi.org/10.1007/s11663-004-0012-x
  • Hamasaiid A., Dour G., Loulou T. and Dargusch M.S. (2010). A predictive model for the evolution of the thermal conductance at the casting–die interfaces in high pressure die casting. International Journal of Thermal Sciences, 49(2), 365–372. https://doi.org/10.1016/j.ijthermalsci.2009.07.014
  • Ho, K., and Pehlke, R. D. (1985). Metal-mold interfacial heat transfer. Metallurgical Transactions B, 16(3), 585-594.
  • Ilkhchy, A. F., Jabbari, M., and Davami, P. (2012). Effect of pressure on heat transfer coefficient at the metal/mold interface of A356 aluminum alloy. International Communications in Heat and Mass Transfer, 39(5), 705-712. https://doi.org/10.1016/j.icheatmasstransfer.2012.04.001
  • Ipek O. ve Koru M. (2011). Yüksek basınçlı döküm prosesinde kalıp sıcaklığına bağlı olarak döküm-kalıp arayüzeyinde oluşan termal temas direncinin belirlenmesi. Isı Bilimi ve Tekniği Dergisi, 31(1), 45-57. Looser R., Vivar M. and Everett V. (2014). Spectral characterization and long-term performance analysis of various commercial heat transfer fluids (HTF) as direct-absorption filters for CPV-T beam-splitting applications, Applied Energy, 113, 1496–1511. https://doi.org/10.1016/j.apenergy.2013.09.001
  • Loulou, T., Artyukhin, E. A. and Bardon, J. P. (1999). Estimation of thermal contract resistance during the first stages of metal solidification process: II—experimental setup and results. International Journal of Heat and Mass Transfer, 42(12), 2129-2142 https://doi.org/10.1016/S0017-9310(98)00338-X
  • Michel F., Louchez P. R., Samuel F. H. (1995). Heat transfer coefficient during solidification of al-si alloys: effects of mold temperature, coating type and thickness. Transactions of The American Foundrymen's Society, 103, 275-283.
  • Reddy, A. V. and Beckermann, C. (1993). Measurements of metal-mold interfacial heat transfer coefficients during solidification of Sn and Sn-Pb alloys. Experimental Heat Transfer an International Journal, 6(2), 111-129. https://doi.org/10.1080/08916159308946449
  • Sabau A.S. and Wu Z. (2007). Evaluation of a heat flux sensor for spray cooling for the die casting processes. Journal of Materials Processing Technology, 182(1-3), 312-318. https://doi.org/10.1016/j.jmatprotec.2006.07.039
  • Sahin H.M., Kocatepe K., Kayıkçı R. and Akar N. (2006). Determination of unidirectional heat transfer coefficient during unsteady-state solidification at metal casting chill interface. Energy Conversion and Management, 47(1), 19-34. https://doi.org/10.1016/j.enconman.2005.03.021
  • Santos C.A., Siqueira C.A., Garcia A. and Quaresma J.M.V. and Spim J.A. (2004). Metal/Mold heat transfer coefficients during horizontal and vertical unsteady-state solidification of Al-Cu and Sn-Pb alloys. Inverse Problems in Science and Engineering, 12(3), 279-296. https://doi.org/10.1080/10682760310001598706
  • Silva, J. N., Moutinho, D. J., Moreira, A. L., Ferreira, I. L., and Rocha, O. L. (2011). Determination of heat transfer coefficients at metal–mold interface during horizontal unsteady-state directional solidification of Sn–Pb alloys. Materials Chemistry and Physics, 130(1-2), 179-185. https://doi.org/10.1016/j.matchemphys.2011.06.032
  • Srinivasan M.N. (1982). Heat transfer coefficients at the casting-mold interface during solidification of flake graphite cast iron in metallic moulds. Indian Journal of Technology, 20 (4), 123-129.
  • Taha M.A., El-Mahallawy N.A., El-Mestekawi M.T. and Hassan A.A. (2001). Estimation of air gap and heat transfer coefficient at different faces of Al and Al-Si casting solidifying in permanent mold. Materials Science and Technology, 17(9), 1093- 1101. https://doi.org/10.1179/026708301101511004
  • Zhang B., Maijer D.M. and Cockcroft S.L. (2007). Development of a 3D thermal model of the low-pressure die-cast (lpdc) process of Al356 aluminum alloy wheels. Materials Science and Engineering: A, 464(1-2), 295-305.
There are 28 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mehmet Kan 0000-0001-7336-1489

Osman İpek 0000-0002-7069-1615

Murat Koru 0000-0002-6949-645X

Project Number -
Publication Date January 15, 2022
Submission Date August 26, 2021
Acceptance Date December 18, 2021
Published in Issue Year 2022 Volume: 12 Issue: 1

Cite

APA Kan, M., İpek, O., & Koru, M. (2022). Basınçlı döküm prosesinde iki farklı soğutma kanallı kalıpların döküm-kalıp arayüzey ısı transfer katsayısının nümerik olarak incelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(1), 283-300. https://doi.org/10.17714/gumusfenbil.987451