Research Article
BibTex RIS Cite

Determination of thermal conductivity and viscosity values of Al2O3-MWCNT/pure water hybrid nanofluid

Year 2022, Volume: 12 Issue: 1, 134 - 150, 15.01.2022
https://doi.org/10.17714/gumusfenbil.992081

Abstract

When the studies on nanofluids in recent years are examined, it is seen that hybrid nanofluids are used to improve their thermophysical properties. The most important step in the comparison of hybrid nanofluids with single nanofluids and basic fluids (water, oil, ethylene glycol, etc.) is to determine their thermophysical properties. The aim of this study is to determine the thermal conductivity and viscosity values of Al2O3-MWCNT/Pure Water nanofluids with increasing volumetric ratio and temperature, finally compare the obtained values with the existing correlations. In the study, Al2O3–MWCNT/Pure Water hybrid nanofluids with 0.1%, 0.2% and 0.3% volumetric ratios were prepared by suspending Al2O3 and MWCNT nanoparticles in pure water at mixing ratios of 0:100%, 50:50% and 100:0%. Experimental results showed that both the thermal conductivity and viscosity of the prepared hybrid nanofluids increased with the nanoparticle volume concentration. It was determined that the thermal conductivity value of the hybrid nanofluid prepared at a 50:50 mixture ratio of 0.1% by volume was higher than the mono nanofluids. Compared to pure water, the highest thermal conductivity increase of 8.56% was obtained for 0.3% (0:100) Al2O3-MWCNT/Pure Water nanofluid at 50°C. The viscosity values increased with the increase of the volumetric ratio and the highest increase was determined as 54.73% for the 0.3% (50-50) Al2O3-MWCNT/Pure Water hybrid nanofluid at 20°C compared to pure water. The maximum viscosity decrease that occurs when the temperature rises from 20°C to 50°C is 55.72% for the 0.3% (50-50) Al2O3-MWCNT/Pure Water hybrid nanofluid at 50°C.

References

  • Abbasi, S. M., Rashidi, A., Nemati, A. and Arzani, K. (2013). The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina. Ceramics International, 39(4), 3885–3891. https://doi.org/10.1016/j.ceramint.2012.10.232
  • Abdolbaqi, M. K., Sidik, N. A. C., Rahim, M. F. A., Mamat, R., Azmi, W. H., Yazid, M. N. A. W. M. and Najafi, G. (2016). Experimental investigation and development of new correlation for thermal conductivity and viscosity of BioGlycol/water based SiO2 nanofluids. International Communications in Heat and Mass Transfer, 77, 54–63. https://doi.org/10.1016/j.icheatmasstransfer.2016.07.001
  • Asadi, A., Alarifi, I. M. and Foong, L. K. (2020). An experimental study on characterization, stability and dynamic viscosity of CuO-TiO2/water hybrid nanofluid. Journal of Molecular Liquids, 307. https://doi.org/10.1016/j.molliq.2020.112987
  • Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E. and Grulke, E. A. (2001). Anomalous thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters, 79(14), 2252–2254. https://doi.org/10.1063/1.1408272
  • Daungthongsuk, W. and Wongwises, S. (2007). A critical review of convective heat transfer of nanofluids. Renewable and Sustainable Energy Reviews, 11(5), 797–817. https://doi.org/10.1016/j.rser.2005.06.005
  • Giwa, S. O., Sharifpur, M., Goodarzi, M., Alsulami, H. and Meyer, J. P. (2021). Influence of base fluid, temperature, and concentration on the thermophysical properties of hybrid nanofluids of alumina–ferrofluid: experimental data, modeling through enhanced ANN, ANFIS, and curve fitting. Journal of Thermal Analysis and Calorimetry, 143(6), 4149–4167. https://doi.org/10.1007/s10973-020-09372-w
  • Giwa, S. O., Sharifpur, M. and Meyer, J. P. (2020). Experimental study of thermo-convection performance of hybrid nanofluids of Al2O3-MWCNT/water in a differentially heated square cavity. International Journal of Heat and Mass Transfer, 148, 119072. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119072
  • Hamid, K. A., Azmi, W. H., Nabil, M. F., Mamat, R. and Sharma, K. V. (2018). Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2-SiO2 nanofluids. International Journal of Heat and Mass Transfer, 116, 1143–1152. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.087
  • Hayat, T. and Nadeem, S. (2017). Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Results in Physics, 7, 2317–2324. https://doi.org/10.1016/j.rinp.2017.06.034
  • Huminic, G., Huminic, A., Dumitrache, F., Fleacă, C. and Morjan, I. (2020). Study of the thermal conductivity of hybrid nanofluids: Recent research and experimental study. Powder Technology, 367, 347–357. https://doi.org/10.1016/j.powtec.2020.03.052
  • Jha, N. and Ramaprabhu, S. (2008). Synthesis and thermal conductivity of copper nanoparticle decorated multiwalled carbon nanotubes based nanofluids. Journal of Physical Chemistry C, 112(25), 9315–9319. https://doi.org/10.1021/jp8017309
  • Kakavandi, A. and Akbari, M. (2018). Experimental investigation of thermal conductivity of nanofluids containing of hybrid nanoparticles suspended in binary base fluids and propose a new correlation. International Journal of Heat and Mass Transfer, 124, 742–751. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.103
  • Kline, S. J. and McClintock, F. A. (1953). Describing uncertainties in single-sample experiments. Mechanical Engineering, 3–8. https://doi.org/10.1111/jcmm.13453
  • Nanografi Inc., Nanoparticles, accessed March 27, 2021, from https://www.nanografi.com.tr/
  • Sundar, L. S., Sharma, K. V., Singh, M. K. and Sousa, A. C. M. (2017). Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor – A review. Renewable and Sustainable Energy Reviews, 68(March 2016), 185–198. https://doi.org/10.1016/j.rser.2016.09.108
  • Sundar, L. S., Singh, M. K. and Sousa, A. C. M. (2014). Enhanced heat transfer and friction factor of MWCNT-Fe3O4/water hybrid nanofluids. International Communications in Heat and Mass Transfer, 52, 73–83. https://doi.org/10.1016/j.icheatmasstransfer.2014.01.012
  • Suresh, S., Venkitaraj, K. P., Selvakumar, P. and Chandrasekar, M. (2011). Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 388(1–3), 41–48. https://doi.org/10.1016/j.colsurfa.2011.08.005
  • Takabi, B. and Salehi, S. (2014). Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Advances in Mechanical Engineering, 2014. https://doi.org/10.1155/2014/147059
  • Urmi, W. T., Rahman, M. M. and Hamzah, W. A. W. (2020). An experimental investigation on the thermophysical properties of 40% ethylene glycol based TiO2-Al2O3 hybrid nanofluids. International Communications in Heat and Mass Transfer, 116(June), 104663. https://doi.org/10.1016/j.icheatmasstransfer.2020.104663
  • Vidhya, R., Balakrishnan, T. and Kumar, B. S. (2020). Investigation on thermophysical properties and heat transfer performance of heat pipe charged with binary mixture based ZnO-MgO hybrid nanofluids. Materials Today: Proceedings, 37(Part 2), 3423–3433. https://doi.org/10.1016/j.matpr.2020.09.284
  • Xuan, Y. and Li, Q. (2000). Heat transfer enhancement of nanofluids. International Journal of Heat and Fluid Flow, 21(1), 58–64. https://doi.org/10.1016/S0142-727X(99)00067-3

Al2O3-MWCNT/saf su hibrit nanoakışkanının ısıl iletkenlik ve viskozite değerlerinin belirlenmesi

Year 2022, Volume: 12 Issue: 1, 134 - 150, 15.01.2022
https://doi.org/10.17714/gumusfenbil.992081

Abstract

Nanoakışkanlar ile ilgili son yıllarda yapılan çalışmalar incelendiğinde termofiziksel özelliklerinin iyileştirilmesi için hibrit nanoakışkanların kullanıldığı görülmektedir. Hibrit nanoakışkanların tekli nanoakışkanlar ve temel akışkanlar (su, yağ, etilen glikol vb.) ile kıyaslanabilmesi için en önemli adım termofiziksel özelliklerinin belirlenmesidir. Bu çalışmanın amacı Al2O3-MWCNT/Saf Su nanoakışkanlarının ısıl iletkenlik, viskozite değerlerini artan hacimsel oran ve sıcaklık ile belirlemek, sonuç olarak da elde edilen değerleri mevcut korelasyonlar ile karşılaştırmaktır. Çalışmada Al2O3 ve MWCNT nanopartikülleri %0:100, %50:50 ve %100:0 karışım oranlarında saf su içinde süspanse edilerek %0.1, %0.2 ve %0.3 hacimsel oranına sahip Al2O3–MWCNT/Saf Su hibrit nanoakışkanları hazırlanmıştır. Deneysel sonuçlar, hazırlanan hibrit nanoakışkanların hem ısıl iletkenliğinin hem de viskozitesinin nanopartikül hacim konsantrasyonu ile arttığını göstermiştir. %0.1 hacimsel oranda %50:50 karışım oranında hazırlanan hibrit nanoakışkanının ısıl iletkenlik değerinin mono nanoakışkanlardan daha yüksek olduğu belirlenmiştir. Saf su ile kıyaslandığında en fazla ısıl iletkenlik artışı %8.56 olarak 50°C’de %0.3 (0:100) Al2O3-MWCNT/Saf Su nanoakışkanı için elde edilmiştir. Hacimsel oranın artışı ile viskozite değerleri artmış ve saf suya kıyasla en fazla artış 20°C’de %0.3 (50:50) Al2O3-MWCNT/Saf Su hibrit nanoakışkanı için %54.73 olarak belirlenmiştir. Sıcaklığın 20°C’ den 50°C’ ye çıkmasıyla meydana gelen en fazla viskozite azalışı 50°de %0.3 (50:50) Al2O3-MWCNT/Saf Su hibrit nanoakışkanı için %55.72’dir.

References

  • Abbasi, S. M., Rashidi, A., Nemati, A. and Arzani, K. (2013). The effect of functionalisation method on the stability and the thermal conductivity of nanofluid hybrids of carbon nanotubes/gamma alumina. Ceramics International, 39(4), 3885–3891. https://doi.org/10.1016/j.ceramint.2012.10.232
  • Abdolbaqi, M. K., Sidik, N. A. C., Rahim, M. F. A., Mamat, R., Azmi, W. H., Yazid, M. N. A. W. M. and Najafi, G. (2016). Experimental investigation and development of new correlation for thermal conductivity and viscosity of BioGlycol/water based SiO2 nanofluids. International Communications in Heat and Mass Transfer, 77, 54–63. https://doi.org/10.1016/j.icheatmasstransfer.2016.07.001
  • Asadi, A., Alarifi, I. M. and Foong, L. K. (2020). An experimental study on characterization, stability and dynamic viscosity of CuO-TiO2/water hybrid nanofluid. Journal of Molecular Liquids, 307. https://doi.org/10.1016/j.molliq.2020.112987
  • Choi, S. U. S., Zhang, Z. G., Yu, W., Lockwood, F. E. and Grulke, E. A. (2001). Anomalous thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters, 79(14), 2252–2254. https://doi.org/10.1063/1.1408272
  • Daungthongsuk, W. and Wongwises, S. (2007). A critical review of convective heat transfer of nanofluids. Renewable and Sustainable Energy Reviews, 11(5), 797–817. https://doi.org/10.1016/j.rser.2005.06.005
  • Giwa, S. O., Sharifpur, M., Goodarzi, M., Alsulami, H. and Meyer, J. P. (2021). Influence of base fluid, temperature, and concentration on the thermophysical properties of hybrid nanofluids of alumina–ferrofluid: experimental data, modeling through enhanced ANN, ANFIS, and curve fitting. Journal of Thermal Analysis and Calorimetry, 143(6), 4149–4167. https://doi.org/10.1007/s10973-020-09372-w
  • Giwa, S. O., Sharifpur, M. and Meyer, J. P. (2020). Experimental study of thermo-convection performance of hybrid nanofluids of Al2O3-MWCNT/water in a differentially heated square cavity. International Journal of Heat and Mass Transfer, 148, 119072. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119072
  • Hamid, K. A., Azmi, W. H., Nabil, M. F., Mamat, R. and Sharma, K. V. (2018). Experimental investigation of thermal conductivity and dynamic viscosity on nanoparticle mixture ratios of TiO2-SiO2 nanofluids. International Journal of Heat and Mass Transfer, 116, 1143–1152. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.087
  • Hayat, T. and Nadeem, S. (2017). Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Results in Physics, 7, 2317–2324. https://doi.org/10.1016/j.rinp.2017.06.034
  • Huminic, G., Huminic, A., Dumitrache, F., Fleacă, C. and Morjan, I. (2020). Study of the thermal conductivity of hybrid nanofluids: Recent research and experimental study. Powder Technology, 367, 347–357. https://doi.org/10.1016/j.powtec.2020.03.052
  • Jha, N. and Ramaprabhu, S. (2008). Synthesis and thermal conductivity of copper nanoparticle decorated multiwalled carbon nanotubes based nanofluids. Journal of Physical Chemistry C, 112(25), 9315–9319. https://doi.org/10.1021/jp8017309
  • Kakavandi, A. and Akbari, M. (2018). Experimental investigation of thermal conductivity of nanofluids containing of hybrid nanoparticles suspended in binary base fluids and propose a new correlation. International Journal of Heat and Mass Transfer, 124, 742–751. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.103
  • Kline, S. J. and McClintock, F. A. (1953). Describing uncertainties in single-sample experiments. Mechanical Engineering, 3–8. https://doi.org/10.1111/jcmm.13453
  • Nanografi Inc., Nanoparticles, accessed March 27, 2021, from https://www.nanografi.com.tr/
  • Sundar, L. S., Sharma, K. V., Singh, M. K. and Sousa, A. C. M. (2017). Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor – A review. Renewable and Sustainable Energy Reviews, 68(March 2016), 185–198. https://doi.org/10.1016/j.rser.2016.09.108
  • Sundar, L. S., Singh, M. K. and Sousa, A. C. M. (2014). Enhanced heat transfer and friction factor of MWCNT-Fe3O4/water hybrid nanofluids. International Communications in Heat and Mass Transfer, 52, 73–83. https://doi.org/10.1016/j.icheatmasstransfer.2014.01.012
  • Suresh, S., Venkitaraj, K. P., Selvakumar, P. and Chandrasekar, M. (2011). Synthesis of Al2O3-Cu/water hybrid nanofluids using two step method and its thermo physical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 388(1–3), 41–48. https://doi.org/10.1016/j.colsurfa.2011.08.005
  • Takabi, B. and Salehi, S. (2014). Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Advances in Mechanical Engineering, 2014. https://doi.org/10.1155/2014/147059
  • Urmi, W. T., Rahman, M. M. and Hamzah, W. A. W. (2020). An experimental investigation on the thermophysical properties of 40% ethylene glycol based TiO2-Al2O3 hybrid nanofluids. International Communications in Heat and Mass Transfer, 116(June), 104663. https://doi.org/10.1016/j.icheatmasstransfer.2020.104663
  • Vidhya, R., Balakrishnan, T. and Kumar, B. S. (2020). Investigation on thermophysical properties and heat transfer performance of heat pipe charged with binary mixture based ZnO-MgO hybrid nanofluids. Materials Today: Proceedings, 37(Part 2), 3423–3433. https://doi.org/10.1016/j.matpr.2020.09.284
  • Xuan, Y. and Li, Q. (2000). Heat transfer enhancement of nanofluids. International Journal of Heat and Fluid Flow, 21(1), 58–64. https://doi.org/10.1016/S0142-727X(99)00067-3
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Eda Feyza Akyürek 0000-0003-4007-6846

Publication Date January 15, 2022
Submission Date September 7, 2021
Acceptance Date November 1, 2021
Published in Issue Year 2022 Volume: 12 Issue: 1

Cite

APA Akyürek, E. F. (2022). Al2O3-MWCNT/saf su hibrit nanoakışkanının ısıl iletkenlik ve viskozite değerlerinin belirlenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(1), 134-150. https://doi.org/10.17714/gumusfenbil.992081