Research Article
BibTex RIS Cite

Manufacturing and controlling 5-axis ball screw driven industrial robot moving through G codes

Year 2022, Volume: 12 Issue: 2, 454 - 465, 15.04.2022
https://doi.org/10.17714/gumusfenbil.990175

Abstract

These days, in industrial robot applications, servo motors with reducer have been used to move robot manipulators. Due to the weight of the robot parts, it causes undesirable conditions such as backward movement, downward movement and vibration caused by the moments of inertia at the time of movement. In this study, step motor ball screw driven actuators, which use push-pull force instead of servo motor with reducers, were utilized to provide rotational movement in robot arms. The ball screw system reduces the effect of moments of inertia caused by the movements of the robot joints, and restricts the free movements of the robot joints. It also provides an advantage by reducing costs since it uses smaller motors. In articulated robots, the complexity of kinematic equations and the use of high-order polynomials for trajectory planning cause difficulties in controlling. In this study, the information of the points, where the robot went during the manual movement, was obtained by using the macros prepared in program interface without using kinematic and trajectory planning equations. The position lines taken at these points were printed in a text file by adding the code G01 and f feed-rate. The robot was made to move by running this file in the program interface used for control. This method allows the operator to use the robot without advanced kinematics knowledge.

Supporting Institution

Harran Üniversitesi Bilimsel Arştırmalar Koordinatörlüğü (HÜBAK)

Project Number

16074

Thanks

I would like to thank Harran University Scientific Research Coordinator (HÜBAK) for providing project support in the production of this robot.

References

  • Arad, B., Balendonck, J., Barth, R., Ben-Shahar, O., Edan, Y., Hellström, T., & Van Tuijl, B. (2020). Development of a sweet pepper harvesting robot. Journal of Field robotics, 37(6), 1027-1039. https://doi.org/10.1002/rob.21937
  • Biggs, G., & MacDonald, B. (2003). A survey of robot programmings systems. Australasian Conference on Robotics and Automation(ACRA) (pp. 1-3). Brisbane: ACRA.
  • Bray, M., Koller-Meier, E., Müller, P., Schraudolph, N., & Van Gool, L. (2005). Stochastic optimization for High-Dimensional Trackink in Dense Range Maps. IEEE Proceedings-Vision, Image and Signal Processing, 152(4), 501-512.
  • Bu-Hai, S., Yong-Zhi, W., & Chuan, D. (2017). A design of realtime communication based on EtherCAT in industrial robot control system based on LinuxCNC. In 2017 29th Chinese Control And Decision Conference (CCDC) (pp. 5776-5780). IEEE. 10.1109/CCDC.2017.7978198
  • Bugday, M., & Karali, M. (2019). Design optimization of industrial robot arm to minimize redundant weight. Engineering Science and Technology, an International Journal, 22(1), 346-352. https://doi.org/10.1016/j.jestch.2018.11.009
  • Denkena, B., Bergmann, B., & Lepper, T. (2017). Design and optimization of a machining robot. Procedia Manufacturing, 14, 89-96. https://doi.org/10.1016/j.promfg.2017.11.010
  • Dilibal, S., & Şahin, H. (2018). İşbirlikçi endüstriyel robotlar ve dijital endüstri. International Journal of 3D Printing Technologies and Digital Industry, 2(1), 86-96. https://dergipark.org.tr/en/pub/ij3dptdi/issue/36075/393765
  • Enes, E., Özcan, M., & Haklı, H. (2021). Building and Cost Analysis of an Industrial Automation System using Industrial Robots and PLC Integration. Avrupa Bilim ve Teknoloji Dergisi, (28), 1-10. https://doi.org/10.1016/j.promfg.2017.11.010
  • Garinei, A., & Marsili, R. (2012). A new diagnostic technique for ball screw actuators. Measurement, 45(5), 819-828. https://doi.org/10.1016/j.measurement.2012.02.023
  • Gaspar-Badillo, J. E., Ramos-Arreguin, J. M., Macias-Bobadilla, G., Talavera-Velazquez, D., Rivas-Araiza, E. A., & Víctor-Alexis, H. B. (2017). Four DOF pneumatic robot design and hardware interface. In 2017 XIII International Engineering Congress (CONIIN) (pp. 1-7). IEEE. 10.1109/CONIIN.2017.7968190
  • Guanjin, L., & Wenyi, L. (2018). Modal analysis of planetary gear train based on ANSYS Workbench. 15th International Conference on Ubiquitous Robots(UR) (pp. 26-30). Hawaii: Convention Center. 10.1109/URAI.2018.8441798
  • Honarpardaz, M., Tarkian, M., Ölvander, J., & Feng, X. (2017). inger design automation for industrial robot grippers: A review. Robotics and Autonomous Systems, 87, 104-119. https://doi.org/10.1016/j.robot.2016.10.003
  • Jamwal, P., Kapsalyamov, A., Hussain, S., & Ghayesh, M. (2020). Performance-based design optimization of an intrinsically compliant 6-dof parallel robot. Mechanics Based Design of Structures and Machines, 48, 1-16. https://doi.org/10.1080/15397734.2020.1746669 Kaci, L., Briot, S., Boudaud, C., & Martinet, P. (2019). Design of a Wooden Five-bar Mechanism. In ROMANSY 22–Robot Design, Dynamics and Control (pp. 331-339). Springer, Cham. https://doi.org/10.1007/978-3-319-78963-7_42
  • Karaçizmeli, C., Çakır, G., & Tükel, D. (2014). Robotic hand project. In 2014 22nd Signal Processing and Communications Applications Conference (SIU) (pp. 473-476). IEEE. 10.1109/SIU.2014.6830268
  • Kohrt, C., Stamp, R., Pipe, A., Kiely, J., & Schiedermeier, G. (2013). An online robot trajectory planning and programming support system for industrial use. Robotic and Computer-Integrated Manufacturing, 29(1), 71-79. https://doi.org/10.1016/j.rcim.2012.07.010
  • Koç, S. & Doğan, C., (2020). Mekanik Bir Robot Tutucusu Tasarımı ve İmalatı. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9(2), 835-845. https://doi.org/10.17798/bitlisfen.595155
  • Li, T., An, X., Deng, X., Li, J., & Li, Y. (2020). A new tooth profile madification method of cycloidal gears in precision reducers for robots. Applied Sciences, 10(4), 1266. https://doi.org/10.3390/app10041266
  • Okwudire, C. (2011). Improved screw-nut interface model for high-performance ball screw drives. journal of Mechanical Design, 133(4), 041009. https://doi.org/10.1115/1.4004000
  • Park, C., & Park, K. (2008). Design and kinematics analysis of dual arm robot manipulator for precision assembly. In 2008 6th IEEE International Conference on Industrial Informatics (pp. 430-435). IEEE. 10.1109/INDIN.2008.4618138
  • Pham, A., & Ahn, H. (2018). High precision reducers for industrial robots driving 4th industrial revolution: state of arts, analysis, design, performance evaluation and perspective. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(4), 519-533. https://doi.org/10.1007/s40684-018-0058-x
  • Rader, S., Kaul, L., Fischbach, H., Vahrenkamp, N., & Asfour, T. (2016). Design of a high-performance humanoid dual arm system with inner shoulder joints. In 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids) (pp. 523-529). IEEE. 10.1109/HUMANOIDS.2016.7803325
  • Raza, K., Khan, T., & Abbas, N. (2018). Kinematic analysis and geometrical improvement of an industrial robotic arm. Journal of King Saud University-Engineering Sciences, 30(3), 218-223. https://doi.org/10.1016/j.jksues.2018.03.005
  • Rossano, G. F., Martinez, C., Hedelind, M., Murphy, S., & Fuhlbrigge, T. A. (2013). Easy robot programming concepts: An industrial perspective. In 2013 IEEE international conference on automation science and engineering (CASE) (pp. 1119-1126). IEEE. 10.1109/CoASE.2013.6654035
  • Sahu, S., Choudhury, B., & Biswal, B. (2017). A vibration analysis of a 6 axis industrial robot using FEA. Materials Today: Proceedings, 4(2), 2403-2410. https://doi.org/10.1016/j.matpr.2017.02.090
  • Sugavaneswaran, M., Rajesh, N., & Sathishkumar, N. (2020). Design of robot gripper with topology optimization and its fabrication using additive manufacturing. In Advances in Additive Manufacturing and Joining (pp. 75-85). Springer, Singapore. https://doi.org/10.1007/978-981-32-9433-2_6
  • Wai, E., & Aung, S. (2019). Design and Implementation of 4-Axis CNC Machine. International Journal of Recent Innovations in Academic Research, 3(8), 60-71.
  • Wen, J., & Murphy, S. (1991). Stability analysis of position and force control for robot arms. IEEE Transactions on Automatic control, 36(3), 365-371. http://cats-fs.rpi.edu/~wenj/papers/force_control_mar_91.pdf
  • Xiong, Y., Ge, Y., Grimstad, L., & From, P. (2020). An autonomous strawberry-harvesting robot: Design, development, integration, and field evaluation. Journal of Field Robotics., 37(2), 202-224. https://doi.org/10.1002/rob.21889

G kodu ile hareket eden beş eksenli bilyalı mil tahrikli endüstriyel robot imalatı ve kontrolü

Year 2022, Volume: 12 Issue: 2, 454 - 465, 15.04.2022
https://doi.org/10.17714/gumusfenbil.990175

Abstract

Günümüz endüstriyel robot uygulamalarında robot manipülatörlerini hareket ettirmek için redüktörlü servo motorlar kullanılmaktadır. Robot parçalarının ağırlıklarından dolayı, hareket anında atalet momentlerinden kaynaklanan geriye doğru hareket, aşağı doğru hareket ve titreşim gibi istenmeyen durumlara neden olmaktadır. Bu çalışmada, robot kollarında dönme hareketini sağlamak için redüktörlü servo motor yerine itme-çekme kuvveti kullanan adım motorlu bilyalı mil tahrikli aktüatörler kullanılmıştır. Bilyalı mil sistemi, robot mafsallarının hareketlerinden kaynaklanan atalet momentlerinin etkisini azaltmakta ve robot mafsallarının serbest hareketlerini kısıtlamaktadır. Ayrıca daha küçük motorların kullanılmasıyla maliyetleri azaltarak avantaj sağlamaktadır. Mafsallı robotlarda, kinematik denklemlerin karmaşık olması ve yörünge planlaması için yüksek dereceli polinomların kullanılması kontrolde zorluklara neden olmaktadır. Bu çalışmada, kinematik denklemler ve yörünge planlaması denklemleri kullanılmadan program arayüzünde hazırlanan makrolar kullanılarak robotun manuel hareketi esnasında gittiği noktaların eksen bilgisi alınmaktadır. Bu noktalarda alınan konum satırlarına, G01kodu ve f ilerleme hızı eklenerek bir metin dosyasına yazdırılmaktadır. Bu dosya kontrol için kullanılan program arayüzünde çalıştırılarak robot hareket ettirilmektedir. Bu yöntem, operatörün ileri derecede kinematik bilgisi olmadan da robotu kullanma imkanı sunmaktadır.

Project Number

16074

References

  • Arad, B., Balendonck, J., Barth, R., Ben-Shahar, O., Edan, Y., Hellström, T., & Van Tuijl, B. (2020). Development of a sweet pepper harvesting robot. Journal of Field robotics, 37(6), 1027-1039. https://doi.org/10.1002/rob.21937
  • Biggs, G., & MacDonald, B. (2003). A survey of robot programmings systems. Australasian Conference on Robotics and Automation(ACRA) (pp. 1-3). Brisbane: ACRA.
  • Bray, M., Koller-Meier, E., Müller, P., Schraudolph, N., & Van Gool, L. (2005). Stochastic optimization for High-Dimensional Trackink in Dense Range Maps. IEEE Proceedings-Vision, Image and Signal Processing, 152(4), 501-512.
  • Bu-Hai, S., Yong-Zhi, W., & Chuan, D. (2017). A design of realtime communication based on EtherCAT in industrial robot control system based on LinuxCNC. In 2017 29th Chinese Control And Decision Conference (CCDC) (pp. 5776-5780). IEEE. 10.1109/CCDC.2017.7978198
  • Bugday, M., & Karali, M. (2019). Design optimization of industrial robot arm to minimize redundant weight. Engineering Science and Technology, an International Journal, 22(1), 346-352. https://doi.org/10.1016/j.jestch.2018.11.009
  • Denkena, B., Bergmann, B., & Lepper, T. (2017). Design and optimization of a machining robot. Procedia Manufacturing, 14, 89-96. https://doi.org/10.1016/j.promfg.2017.11.010
  • Dilibal, S., & Şahin, H. (2018). İşbirlikçi endüstriyel robotlar ve dijital endüstri. International Journal of 3D Printing Technologies and Digital Industry, 2(1), 86-96. https://dergipark.org.tr/en/pub/ij3dptdi/issue/36075/393765
  • Enes, E., Özcan, M., & Haklı, H. (2021). Building and Cost Analysis of an Industrial Automation System using Industrial Robots and PLC Integration. Avrupa Bilim ve Teknoloji Dergisi, (28), 1-10. https://doi.org/10.1016/j.promfg.2017.11.010
  • Garinei, A., & Marsili, R. (2012). A new diagnostic technique for ball screw actuators. Measurement, 45(5), 819-828. https://doi.org/10.1016/j.measurement.2012.02.023
  • Gaspar-Badillo, J. E., Ramos-Arreguin, J. M., Macias-Bobadilla, G., Talavera-Velazquez, D., Rivas-Araiza, E. A., & Víctor-Alexis, H. B. (2017). Four DOF pneumatic robot design and hardware interface. In 2017 XIII International Engineering Congress (CONIIN) (pp. 1-7). IEEE. 10.1109/CONIIN.2017.7968190
  • Guanjin, L., & Wenyi, L. (2018). Modal analysis of planetary gear train based on ANSYS Workbench. 15th International Conference on Ubiquitous Robots(UR) (pp. 26-30). Hawaii: Convention Center. 10.1109/URAI.2018.8441798
  • Honarpardaz, M., Tarkian, M., Ölvander, J., & Feng, X. (2017). inger design automation for industrial robot grippers: A review. Robotics and Autonomous Systems, 87, 104-119. https://doi.org/10.1016/j.robot.2016.10.003
  • Jamwal, P., Kapsalyamov, A., Hussain, S., & Ghayesh, M. (2020). Performance-based design optimization of an intrinsically compliant 6-dof parallel robot. Mechanics Based Design of Structures and Machines, 48, 1-16. https://doi.org/10.1080/15397734.2020.1746669 Kaci, L., Briot, S., Boudaud, C., & Martinet, P. (2019). Design of a Wooden Five-bar Mechanism. In ROMANSY 22–Robot Design, Dynamics and Control (pp. 331-339). Springer, Cham. https://doi.org/10.1007/978-3-319-78963-7_42
  • Karaçizmeli, C., Çakır, G., & Tükel, D. (2014). Robotic hand project. In 2014 22nd Signal Processing and Communications Applications Conference (SIU) (pp. 473-476). IEEE. 10.1109/SIU.2014.6830268
  • Kohrt, C., Stamp, R., Pipe, A., Kiely, J., & Schiedermeier, G. (2013). An online robot trajectory planning and programming support system for industrial use. Robotic and Computer-Integrated Manufacturing, 29(1), 71-79. https://doi.org/10.1016/j.rcim.2012.07.010
  • Koç, S. & Doğan, C., (2020). Mekanik Bir Robot Tutucusu Tasarımı ve İmalatı. Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 9(2), 835-845. https://doi.org/10.17798/bitlisfen.595155
  • Li, T., An, X., Deng, X., Li, J., & Li, Y. (2020). A new tooth profile madification method of cycloidal gears in precision reducers for robots. Applied Sciences, 10(4), 1266. https://doi.org/10.3390/app10041266
  • Okwudire, C. (2011). Improved screw-nut interface model for high-performance ball screw drives. journal of Mechanical Design, 133(4), 041009. https://doi.org/10.1115/1.4004000
  • Park, C., & Park, K. (2008). Design and kinematics analysis of dual arm robot manipulator for precision assembly. In 2008 6th IEEE International Conference on Industrial Informatics (pp. 430-435). IEEE. 10.1109/INDIN.2008.4618138
  • Pham, A., & Ahn, H. (2018). High precision reducers for industrial robots driving 4th industrial revolution: state of arts, analysis, design, performance evaluation and perspective. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(4), 519-533. https://doi.org/10.1007/s40684-018-0058-x
  • Rader, S., Kaul, L., Fischbach, H., Vahrenkamp, N., & Asfour, T. (2016). Design of a high-performance humanoid dual arm system with inner shoulder joints. In 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids) (pp. 523-529). IEEE. 10.1109/HUMANOIDS.2016.7803325
  • Raza, K., Khan, T., & Abbas, N. (2018). Kinematic analysis and geometrical improvement of an industrial robotic arm. Journal of King Saud University-Engineering Sciences, 30(3), 218-223. https://doi.org/10.1016/j.jksues.2018.03.005
  • Rossano, G. F., Martinez, C., Hedelind, M., Murphy, S., & Fuhlbrigge, T. A. (2013). Easy robot programming concepts: An industrial perspective. In 2013 IEEE international conference on automation science and engineering (CASE) (pp. 1119-1126). IEEE. 10.1109/CoASE.2013.6654035
  • Sahu, S., Choudhury, B., & Biswal, B. (2017). A vibration analysis of a 6 axis industrial robot using FEA. Materials Today: Proceedings, 4(2), 2403-2410. https://doi.org/10.1016/j.matpr.2017.02.090
  • Sugavaneswaran, M., Rajesh, N., & Sathishkumar, N. (2020). Design of robot gripper with topology optimization and its fabrication using additive manufacturing. In Advances in Additive Manufacturing and Joining (pp. 75-85). Springer, Singapore. https://doi.org/10.1007/978-981-32-9433-2_6
  • Wai, E., & Aung, S. (2019). Design and Implementation of 4-Axis CNC Machine. International Journal of Recent Innovations in Academic Research, 3(8), 60-71.
  • Wen, J., & Murphy, S. (1991). Stability analysis of position and force control for robot arms. IEEE Transactions on Automatic control, 36(3), 365-371. http://cats-fs.rpi.edu/~wenj/papers/force_control_mar_91.pdf
  • Xiong, Y., Ge, Y., Grimstad, L., & From, P. (2020). An autonomous strawberry-harvesting robot: Design, development, integration, and field evaluation. Journal of Field Robotics., 37(2), 202-224. https://doi.org/10.1002/rob.21889
There are 28 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Savaş Koç 0000-0002-5257-3287

Cengiz Doğan 0000-0002-1468-8462

Project Number 16074
Publication Date April 15, 2022
Submission Date September 2, 2021
Acceptance Date February 1, 2022
Published in Issue Year 2022 Volume: 12 Issue: 2

Cite

APA Koç, S., & Doğan, C. (2022). Manufacturing and controlling 5-axis ball screw driven industrial robot moving through G codes. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(2), 454-465. https://doi.org/10.17714/gumusfenbil.990175