Research Article
BibTex RIS Cite

Atmosferik basınçta imidazolyum tuzları ile CO2’nin halkalı karbonatlara dönüşümü

Year 2022, Volume: 12 Issue: 3, 923 - 935, 15.07.2022
https://doi.org/10.17714/gumusfenbil.1108451

Abstract

Küresel ısınmaya neden olan CO2 doğal olarak bol bulunan, ucuz, genellikle sentez reaksiyonları için yapı taşı olarak kullanılabilen, toksik olmayan karbon (C1) kaynağı ve katma değerli kimyasal olarak bilinen inert bir maddedir. Kinetik eylemsizliği ve termodinamik kararlılığı nedeniyle verimli kullanımı zor olan CO2'nin bir katalizör yardımı ile halkalı karbonatlara dönüşümü en umut verici olan çalışmalardır. Bu nedenle bu çalışmada, 1-bütil-3-metilimidazolyum iyodür ([Bmim]I) ve 1-bütil-3-metilimidazolyum hekzaflorofosfat ([Bmim]PF6) imidazolyum tuzları CO2'nin epoksitler ile halkalı karbonatlara dönüşümünde katalizör olarak kullanılmıştır. Hem yüksek basınç ve yüksek sıcaklık altında hem de atmosferik basınç altında halkalı karbonatlara dönüşüm çalışmaları gerçekleştirilmiştir. Otoklavda yüksek verim sağlayan iyonik sıvılar atmosferik ortamda da oldukça iyi sonuçlar vermiştir. Atmosferik ortamda sürenin (2 saat ve 24 saat) ve sıcaklığın (60 °C ve 100 °C) etkisi ile optimizasyon çalışmaları gerçekleştirilmiştir. İyonik sıvılar ile katalize edilen bu sürecin, CO2'nin atmosferik ortamda kimyasal dönüşümü için de umut verici olduğu belirlenmiştir.

References

  • Andrea, K. A., & Kerton, F. M. (2019). Triarylborane-catalyzed formation of cyclic organic carbonates and polycarbonates. Acs Catalysis, 9(3), 1799-1809. https://doi.org/10.1021/acscatal.8b04282.
  • Annual CO2 Data. (2021). https://www.co2.earth/annual-co2
  • Arakawa, H., Aresta, M., Armor, J. N., Barteau, M. A., Beckman, E. J., Bell, A.T., Bercaw, J. E., Creutz, C., Dinjus, E., Dixon, D. A., Domen, K., Dubois, D. L., Eckert, J., Fujita, E., Gibson, D. H., Goddard, W. A., Goodman, D. W., Keller, J., Kubas, G. J., Kung, H. H., Lyons, J. E., Manzer, L. E., Marks, T. J., Morokuma, K., Nicholas, K. N., Stults, B. R., & Tumas, W. (2001). Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chemical Reviews, 101(4), 953-996. https://doi.org/10.1021/cr000018s
  • Arayachukiat, S., Kongtes, C., Barthel, A., Vummaleti, S. V., Poater, A., Wannakao, S., & D’Elia, V. (2017). Ascorbic acid as a bifunctional hydrogen bond donor for the synthesis of cyclic carbonates from CO2 under ambient conditions. ACS Sustainable Chemistry & Engineering, 5(8), 6392-6397. https://doi.org/10.1021/acssuschemeng.7b01650
  • Aytar, E. (2013). İyonik sıvılar ve NN tipi Zn-katalizörleri varliğinda CO2’in organik ürünlere dönüşümü [Yüksek Lisans Tezi, Harran Üniversitesi Fen Bilimleri Enstitüsü].
  • Aytar, E. (2019). Konjuge NN kompleks bileşikleri ve katalitik uygulamaları [Doktora Tezi, Harran Üniversitesi Fen Bilimleri Enstitüsü].
  • Barthel, A., Saih, Y., Gimenez, M., Pelletier, J. D., Kühn, F. E., D'elia, V., & Basset, J. M. (2016). Highly integrated CO2 capture and conversion: direct synthesis of cyclic carbonates from industrial flue gas. Green Chemistry, 18(10), 3116-3123. https://doi.org/10.1039/C5GC03007B
  • Cokoja, M., Wilhelm, M. E., Anthofer, M. H., Herrmann, W. A., & Kühn, F. E. (2015). Synthesis of cyclic carbonates from epoxides and carbon dioxide by using organocatalysts. Chemistry Sustainability Energy Materials, 8(15), 2436-2454. https://doi.org/10.1002/cssc.201500161
  • Comerford, J. W., Ingram, I. D. V., North, M., & Wu, X. (2015). Sustainable metal-based catalysts for the synthesis of cyclic carbonates containing five-membered rings. Green Chemistry, 17, 1966–1987. https://doi.org/10.1039/C4GC01719F
  • Darensbourg, D. J., Bottarelli, P., & Andreatta, J. R. (2007). Further studies related to the copolymerization of cyclohexene oxide and carbon dioxide catalyzed by chromium schiff base complexes. crystal structures of two l-hydroxo-bridged schiff base dimers of chromium(III). Macromolecules, 40, 7727-7729. https://doi.org/10.1021/ic049182e
  • Darensbourg, D. J., Mackiewicz, R. M., Phelps, A. L., & Billodeaux, D. R. (2004). Copolymerization of CO2 and epoxides catalyzed by metal salen complexes. Accounts of Chemical Research, 37(11), 836-844. https://doi.org/10.1021/ar030240u
  • Fiorani, G., Guo, W., & Kleij, A. W. (2015). Sustainable conversion of carbon dioxide: the advent of organocatalysis. Green Chemistry, 17(3), 1375-1389. https://doi.org/10.1039/C4GC01959H
  • Kilic, A., Aytar, E., & Beyazsakal, L. (2021). A novel dopamine‐based boronate esters with the organic base as highly efficient, stable, and green catalysts for the conversion of CO2 with epoxides to cyclic carbonates. Energy Technology, 9(9), 2100478. https://dx.doi.org/10.1002/ente.202100478
  • Kılıç, A., Durgun, M., Aytar, E., & Yavuz R. (2018). The synthesis and investigation of different cobaloximines by spectroscopic methods. Journal of Organometallic Chemistry, 858, 78–88. https://dx.doi.org/10.1016/j.jorganchem.2018.01.029
  • Kılıc, A., Ulusoy, M., Aytar, E., & Durgun, M. (2015). Mono multinuclear cobaloxime and organocobaloxime catalyzed conversion of CO2 and epoxides to cyclic organic carbonates synthesis and characterization. Journal of Industrial and Engineering Chemistry, 24, 98-106. https://dx.doi.org/10.1016/j.jiec.2014.09.015
  • Kilic, A., Sobay, B., Aytar, E., & Söylemez, R. (2020). Synthesis and effective catalytic performance in cycloaddition reactions with CO2 of boronate esters versus N-heterocyclic carbene (NHC)-stabilized boronate esters. Sustainable Energy & Fuels, 4(11), 5682-5696. https://dx.doi.org/10.1039/d0se01189d
  • Li, C., Liu, F., Zhao, T., Gu, J., Chen, P., & Chen, T. (2021). Highly efficient CO2 fixation into cyclic carbonate by hydroxyl-functionalized protic ionic liquids at atmospheric pressure. Molecular Catalysis, 511, 111756. https://doi.org/10.1021/acsomega.1c05416
  • Li, B., Zhang, R., & Lu, X. B. (2007). Stereochemistry control of the alternating copolymerization of CO2 and propylene oxide catalyzed by SalenCrX complexes. Macromolecules, 40, 2303-2307. https://doi.org/10.1021/ma062735f
  • Lu, X. B., & Darensbourg, D. J. (2012). Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates. Chemical Sociecty Reviews, 41, 1462–1484. https://doi.org/10.1039/C1CS15142H
  • Lu, X. B., Zhang, Y. J., Liang, B., X. Wang, & Li, H. (2004). Chemical fixation of carbon dioxide to cyclic carbonates under extremely mild conditions with highly active bifunctional catalysts. Journal of Molecular Catalysis A: Chemical, 210, 31-34. https://doi.org/10.1016/j.molcata.2003.09.010
  • Martin, C., Fiorani, G., & Kleij, A. W. (2015). Recent advances in the catalytic preparation of cyclic organic carbonates. ACS Catalysis, 5, 1353–1370. https://doi.org/10.1021/cs5018997
  • Mirabaud, A., Martinez, A., Bayard, F., Dutasta, J. P., & Dufaud, V. (2018). A new heterogeneous host–guest catalytic system as an eco-friendly approach for the synthesis of cyclic carbonates from CO2 and epoxides. New Journal of Chemistry, 42, 16863–16874. https://doi.org/10.1039/C8NJ03065K
  • Mujmule, R. B., & Kim, H. (2022). Efficient imidazolium ionic liquid as a tri-functional robust catalyst for chemical fixation of CO2 into cyclic carbonates. Journal of Environmental Management, 314, 115045. https://doi.org/10.1016/j.jenvman.2022.115045
  • Noyori, R., Jessop, P. G., & Ikariya, T. (1995). Homogeneous hydrogenation of carbon dioxide. Chemical Reviews, 95, 259-272. https://doi.org/10.1021/cr00034a001
  • Omae, I. (2006). Aspects of carbon dioxide utilization. Catalysis Today, 115, 33-52. https://doi.org/10.1016/j.cattod.2006.02.024
  • Paddock, R. L., & Nguyen, S. T. (2001). Chemical CO2 fixation: Cr(III) salen complexes as highly efficient catalysts for the coupling of CO2 and epoxide. Journal of the American Chemical Society, 123, 11498-11499. https://doi.org/10.1021/ja0164677
  • Peng, J., Yang, H. J., Wang, S., Ban, B., Wei, Z., Lei, B., & Guo, C. Y. (2018). Efficient solvent-free fixation of CO2 catalyzed by new recyclable bifunctional metal complexes. Journal of CO2 Utilization, 24, 1-9. https://doi.org/10.1016/j.jcou.2017.12.003
  • Sakakura, T., & Kohno, K. (2009). The synthesis of organic carbonates from carbon dioxide. Chemical Communications, (11), 1312-1330. https://doi.org/10.1039/B819997C
  • Stamp, L. M., Mang, S. A., Holmes, A. B., Knights, K. A., de Miguel, Y. R., & McConvey, I. F. (2001). Polymer supported chromium porphyrin as catalyst for polycarbonate formation in supercritical carbon dioxide. Chemical Communications, (23), 2502-2503. https://doi.org/10.1039/B107400H
  • Shaikh, A. A. G., & Sivaram, S. (1996). Organic carbonates. Chemical Reviews, 96, 951-976. https://doi.org/10.1021/cr950067i
  • Sogukomerogulları, H. G., Aytar, E., Ulusoy, M., Demir, S., Dege, N., Richeson, D. S., & Sönmez, M. (2018). Synthesis of complexes Fe, Co and Cu supported by “SNS” pincer ligands and their ability to catalytically form cyclic carbonates. Inorganica Chimica Acta, 471, 290-296. https://dx.doi.org/10.1016/j.ica.2017.11.007
  • Ulusoy, M., Çetinkaya, E., & Çetinkaya, B. (2009). Conversion of carbon dioxide to cyclic carbonates using diimine Ru(II) complexes as catalysts. Applied Organometallic Chemistry, 23, 68-74. https://doi.org/10.1002/aoc.1473
  • Yamaguchi, K., Ebitani, K., Yoshida, T., Yoshida, H., & Kaneda, K. (1999). Mg− Al mixed oxides as highly active acid− base catalysts for cycloaddition of carbon dioxide to epoxides. Journal of the American Chemical Society, 121(18), 4526-4527. https://doi.org/10.1021/ja9902165
  • Yang, Z. Z., Zhao, Y. N., & He, L. N. (2011). CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion. Rsc Advances, 1(4), 545-567. https://doi.org/10.1039/C1RA00307K
  • Zhang, Z., Gao, H., Wu, H., Qian, Y., Chen, L., & Chen, J. (2018). Chemical fixation of CO2 by using carbon material-grafted N-heterocyclic carbene silver and copper complexes. ACS Applied Nano Materials, 1, 6463–6476. https://doi.org/10.1021/acsanm.8b01679
  • Zhang, H., Kong, X., Cao, C., Pang, G., & Shi, Y. (2016). An efficient ternary catalyst ZnBr2/K2CO3/[Bmim] Br for chemical fixation of CO2 into cyclic carbonates at ambient conditions. Journal of CO2 Utilization, 14, 76-82. https://doi.org/10.1016/j.jcou.2016.03.001
  • Zhao H. (2006). Innovatıve applıcatıons of ıonıc lıquıds as “green” engıneerıng lıquıds. Chemical Engineering Communications. 193, 1660–1677. https://doi.org/10.1080/00986440600586537
  • Wang, J., & Zhang, Y. (2016). Boronic acids as hydrogen bond donor catalysts for efficient conversion of CO2 into organic carbonate in water. ACS Catalysis, 6(8), 4871-4876. https://doi.org/10.1021/acscatal.6b01422
  • Xu, B. H., Wang, J. Q., Sun, J., Huang, Y., Zhang, J. P., Zhang, X. P., & Zhang, S. J. (2015). Fixation of CO2 into cyclic carbonates catalyzed by ionic liquids: a multi-scale approach. Green Chemistry, 17(1), 108-122. https://doi.org/10.1039/C4GC01754D

Conversion of CO2 to cyclic carbonates by imidazolium salts at atmospheric pressure

Year 2022, Volume: 12 Issue: 3, 923 - 935, 15.07.2022
https://doi.org/10.17714/gumusfenbil.1108451

Abstract

CO2, which causes global warming, is a naturally abundant, inexpensive, inert substance known as a non-toxic carbon (C1) source and value-added chemical, which can often be used as a building block for synthesis reactions. The conversion of CO2, which is difficult to use efficiently due to its kinetic inertia and thermodynamic stability, to cyclic carbonates with the help of a catalyst are the most promising studies. Therefore, in this study, 1-bütyl-3-methylimidazolium iodide ([Bmim]I) and 1-bütyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF6) imidazolium salts were used as catalysts in the conversion of CO2 into cyclic carbonates with epoxides. Conversion studies to cyclic carbonates were carried out under both high pressure and high temperature and atmospheric pressure. Ionic liquids, which provide high efficiency in the autoclave, also gave very good results in the atmospheric ambient. Optimization studies were carried out with the effect of time (2 hours and 24 hours) and temperature (60 °C and 100 °C) in the atmospheric ambient. It has been determined that this process, catalyzed by ionic liquids, is also promising for the chemical conversion of CO2 in the atmospheric ambient.

References

  • Andrea, K. A., & Kerton, F. M. (2019). Triarylborane-catalyzed formation of cyclic organic carbonates and polycarbonates. Acs Catalysis, 9(3), 1799-1809. https://doi.org/10.1021/acscatal.8b04282.
  • Annual CO2 Data. (2021). https://www.co2.earth/annual-co2
  • Arakawa, H., Aresta, M., Armor, J. N., Barteau, M. A., Beckman, E. J., Bell, A.T., Bercaw, J. E., Creutz, C., Dinjus, E., Dixon, D. A., Domen, K., Dubois, D. L., Eckert, J., Fujita, E., Gibson, D. H., Goddard, W. A., Goodman, D. W., Keller, J., Kubas, G. J., Kung, H. H., Lyons, J. E., Manzer, L. E., Marks, T. J., Morokuma, K., Nicholas, K. N., Stults, B. R., & Tumas, W. (2001). Catalysis research of relevance to carbon management: progress, challenges, and opportunities. Chemical Reviews, 101(4), 953-996. https://doi.org/10.1021/cr000018s
  • Arayachukiat, S., Kongtes, C., Barthel, A., Vummaleti, S. V., Poater, A., Wannakao, S., & D’Elia, V. (2017). Ascorbic acid as a bifunctional hydrogen bond donor for the synthesis of cyclic carbonates from CO2 under ambient conditions. ACS Sustainable Chemistry & Engineering, 5(8), 6392-6397. https://doi.org/10.1021/acssuschemeng.7b01650
  • Aytar, E. (2013). İyonik sıvılar ve NN tipi Zn-katalizörleri varliğinda CO2’in organik ürünlere dönüşümü [Yüksek Lisans Tezi, Harran Üniversitesi Fen Bilimleri Enstitüsü].
  • Aytar, E. (2019). Konjuge NN kompleks bileşikleri ve katalitik uygulamaları [Doktora Tezi, Harran Üniversitesi Fen Bilimleri Enstitüsü].
  • Barthel, A., Saih, Y., Gimenez, M., Pelletier, J. D., Kühn, F. E., D'elia, V., & Basset, J. M. (2016). Highly integrated CO2 capture and conversion: direct synthesis of cyclic carbonates from industrial flue gas. Green Chemistry, 18(10), 3116-3123. https://doi.org/10.1039/C5GC03007B
  • Cokoja, M., Wilhelm, M. E., Anthofer, M. H., Herrmann, W. A., & Kühn, F. E. (2015). Synthesis of cyclic carbonates from epoxides and carbon dioxide by using organocatalysts. Chemistry Sustainability Energy Materials, 8(15), 2436-2454. https://doi.org/10.1002/cssc.201500161
  • Comerford, J. W., Ingram, I. D. V., North, M., & Wu, X. (2015). Sustainable metal-based catalysts for the synthesis of cyclic carbonates containing five-membered rings. Green Chemistry, 17, 1966–1987. https://doi.org/10.1039/C4GC01719F
  • Darensbourg, D. J., Bottarelli, P., & Andreatta, J. R. (2007). Further studies related to the copolymerization of cyclohexene oxide and carbon dioxide catalyzed by chromium schiff base complexes. crystal structures of two l-hydroxo-bridged schiff base dimers of chromium(III). Macromolecules, 40, 7727-7729. https://doi.org/10.1021/ic049182e
  • Darensbourg, D. J., Mackiewicz, R. M., Phelps, A. L., & Billodeaux, D. R. (2004). Copolymerization of CO2 and epoxides catalyzed by metal salen complexes. Accounts of Chemical Research, 37(11), 836-844. https://doi.org/10.1021/ar030240u
  • Fiorani, G., Guo, W., & Kleij, A. W. (2015). Sustainable conversion of carbon dioxide: the advent of organocatalysis. Green Chemistry, 17(3), 1375-1389. https://doi.org/10.1039/C4GC01959H
  • Kilic, A., Aytar, E., & Beyazsakal, L. (2021). A novel dopamine‐based boronate esters with the organic base as highly efficient, stable, and green catalysts for the conversion of CO2 with epoxides to cyclic carbonates. Energy Technology, 9(9), 2100478. https://dx.doi.org/10.1002/ente.202100478
  • Kılıç, A., Durgun, M., Aytar, E., & Yavuz R. (2018). The synthesis and investigation of different cobaloximines by spectroscopic methods. Journal of Organometallic Chemistry, 858, 78–88. https://dx.doi.org/10.1016/j.jorganchem.2018.01.029
  • Kılıc, A., Ulusoy, M., Aytar, E., & Durgun, M. (2015). Mono multinuclear cobaloxime and organocobaloxime catalyzed conversion of CO2 and epoxides to cyclic organic carbonates synthesis and characterization. Journal of Industrial and Engineering Chemistry, 24, 98-106. https://dx.doi.org/10.1016/j.jiec.2014.09.015
  • Kilic, A., Sobay, B., Aytar, E., & Söylemez, R. (2020). Synthesis and effective catalytic performance in cycloaddition reactions with CO2 of boronate esters versus N-heterocyclic carbene (NHC)-stabilized boronate esters. Sustainable Energy & Fuels, 4(11), 5682-5696. https://dx.doi.org/10.1039/d0se01189d
  • Li, C., Liu, F., Zhao, T., Gu, J., Chen, P., & Chen, T. (2021). Highly efficient CO2 fixation into cyclic carbonate by hydroxyl-functionalized protic ionic liquids at atmospheric pressure. Molecular Catalysis, 511, 111756. https://doi.org/10.1021/acsomega.1c05416
  • Li, B., Zhang, R., & Lu, X. B. (2007). Stereochemistry control of the alternating copolymerization of CO2 and propylene oxide catalyzed by SalenCrX complexes. Macromolecules, 40, 2303-2307. https://doi.org/10.1021/ma062735f
  • Lu, X. B., & Darensbourg, D. J. (2012). Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates. Chemical Sociecty Reviews, 41, 1462–1484. https://doi.org/10.1039/C1CS15142H
  • Lu, X. B., Zhang, Y. J., Liang, B., X. Wang, & Li, H. (2004). Chemical fixation of carbon dioxide to cyclic carbonates under extremely mild conditions with highly active bifunctional catalysts. Journal of Molecular Catalysis A: Chemical, 210, 31-34. https://doi.org/10.1016/j.molcata.2003.09.010
  • Martin, C., Fiorani, G., & Kleij, A. W. (2015). Recent advances in the catalytic preparation of cyclic organic carbonates. ACS Catalysis, 5, 1353–1370. https://doi.org/10.1021/cs5018997
  • Mirabaud, A., Martinez, A., Bayard, F., Dutasta, J. P., & Dufaud, V. (2018). A new heterogeneous host–guest catalytic system as an eco-friendly approach for the synthesis of cyclic carbonates from CO2 and epoxides. New Journal of Chemistry, 42, 16863–16874. https://doi.org/10.1039/C8NJ03065K
  • Mujmule, R. B., & Kim, H. (2022). Efficient imidazolium ionic liquid as a tri-functional robust catalyst for chemical fixation of CO2 into cyclic carbonates. Journal of Environmental Management, 314, 115045. https://doi.org/10.1016/j.jenvman.2022.115045
  • Noyori, R., Jessop, P. G., & Ikariya, T. (1995). Homogeneous hydrogenation of carbon dioxide. Chemical Reviews, 95, 259-272. https://doi.org/10.1021/cr00034a001
  • Omae, I. (2006). Aspects of carbon dioxide utilization. Catalysis Today, 115, 33-52. https://doi.org/10.1016/j.cattod.2006.02.024
  • Paddock, R. L., & Nguyen, S. T. (2001). Chemical CO2 fixation: Cr(III) salen complexes as highly efficient catalysts for the coupling of CO2 and epoxide. Journal of the American Chemical Society, 123, 11498-11499. https://doi.org/10.1021/ja0164677
  • Peng, J., Yang, H. J., Wang, S., Ban, B., Wei, Z., Lei, B., & Guo, C. Y. (2018). Efficient solvent-free fixation of CO2 catalyzed by new recyclable bifunctional metal complexes. Journal of CO2 Utilization, 24, 1-9. https://doi.org/10.1016/j.jcou.2017.12.003
  • Sakakura, T., & Kohno, K. (2009). The synthesis of organic carbonates from carbon dioxide. Chemical Communications, (11), 1312-1330. https://doi.org/10.1039/B819997C
  • Stamp, L. M., Mang, S. A., Holmes, A. B., Knights, K. A., de Miguel, Y. R., & McConvey, I. F. (2001). Polymer supported chromium porphyrin as catalyst for polycarbonate formation in supercritical carbon dioxide. Chemical Communications, (23), 2502-2503. https://doi.org/10.1039/B107400H
  • Shaikh, A. A. G., & Sivaram, S. (1996). Organic carbonates. Chemical Reviews, 96, 951-976. https://doi.org/10.1021/cr950067i
  • Sogukomerogulları, H. G., Aytar, E., Ulusoy, M., Demir, S., Dege, N., Richeson, D. S., & Sönmez, M. (2018). Synthesis of complexes Fe, Co and Cu supported by “SNS” pincer ligands and their ability to catalytically form cyclic carbonates. Inorganica Chimica Acta, 471, 290-296. https://dx.doi.org/10.1016/j.ica.2017.11.007
  • Ulusoy, M., Çetinkaya, E., & Çetinkaya, B. (2009). Conversion of carbon dioxide to cyclic carbonates using diimine Ru(II) complexes as catalysts. Applied Organometallic Chemistry, 23, 68-74. https://doi.org/10.1002/aoc.1473
  • Yamaguchi, K., Ebitani, K., Yoshida, T., Yoshida, H., & Kaneda, K. (1999). Mg− Al mixed oxides as highly active acid− base catalysts for cycloaddition of carbon dioxide to epoxides. Journal of the American Chemical Society, 121(18), 4526-4527. https://doi.org/10.1021/ja9902165
  • Yang, Z. Z., Zhao, Y. N., & He, L. N. (2011). CO2 chemistry: task-specific ionic liquids for CO2 capture/activation and subsequent conversion. Rsc Advances, 1(4), 545-567. https://doi.org/10.1039/C1RA00307K
  • Zhang, Z., Gao, H., Wu, H., Qian, Y., Chen, L., & Chen, J. (2018). Chemical fixation of CO2 by using carbon material-grafted N-heterocyclic carbene silver and copper complexes. ACS Applied Nano Materials, 1, 6463–6476. https://doi.org/10.1021/acsanm.8b01679
  • Zhang, H., Kong, X., Cao, C., Pang, G., & Shi, Y. (2016). An efficient ternary catalyst ZnBr2/K2CO3/[Bmim] Br for chemical fixation of CO2 into cyclic carbonates at ambient conditions. Journal of CO2 Utilization, 14, 76-82. https://doi.org/10.1016/j.jcou.2016.03.001
  • Zhao H. (2006). Innovatıve applıcatıons of ıonıc lıquıds as “green” engıneerıng lıquıds. Chemical Engineering Communications. 193, 1660–1677. https://doi.org/10.1080/00986440600586537
  • Wang, J., & Zhang, Y. (2016). Boronic acids as hydrogen bond donor catalysts for efficient conversion of CO2 into organic carbonate in water. ACS Catalysis, 6(8), 4871-4876. https://doi.org/10.1021/acscatal.6b01422
  • Xu, B. H., Wang, J. Q., Sun, J., Huang, Y., Zhang, J. P., Zhang, X. P., & Zhang, S. J. (2015). Fixation of CO2 into cyclic carbonates catalyzed by ionic liquids: a multi-scale approach. Green Chemistry, 17(1), 108-122. https://doi.org/10.1039/C4GC01754D
There are 39 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Emine Aytar 0000-0001-7572-8088

Publication Date July 15, 2022
Submission Date April 25, 2022
Acceptance Date July 1, 2022
Published in Issue Year 2022 Volume: 12 Issue: 3

Cite

APA Aytar, E. (2022). Atmosferik basınçta imidazolyum tuzları ile CO2’nin halkalı karbonatlara dönüşümü. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(3), 923-935. https://doi.org/10.17714/gumusfenbil.1108451