Research Article
BibTex RIS Cite

Kestane kabuğu kullanılarak sulu çözeltilerden boyar madde gideriminin izoterm, kinetik ve termodinamik analizi

Year 2022, Volume: 12 Issue: 4, 1158 - 1167, 15.10.2022
https://doi.org/10.17714/gumusfenbil.983162

Abstract

Bu çalışmada, kestane kabuğu kullanılarak sulu çözeltilerden kristal viyole boyar maddesinin giderimi incelenmiştir. Bu amaçla, başlangıç boyar madde derişimi, adsorbent dozajı, temas süresi, pH ve sıcaklık gibi parametrelerin adsorpsiyon performansı üzerindeki etkileri araştırılmıştır. Elde edilen sonuçlara göre, artan sıcaklık ve adsorbent dozajı ile giderim verimi artmıştır. Başlangıç boyar madde derişimi arttığında ise giderim veriminin azaldığı görülmüştür. Denge adsorpsiyon verileri kullanılarak yapılan izoterm çalışmalarında en iyi sonuç Langmuir izoterminde elde edilmiş ve optimize edilmiş koşullarda maksimum boyar madde adsorpsiyon kapasitesi 48.78 mg/g olarak hesaplanmıştır. Yalancı birinci dereceden ve yalancı ikinci dereceden kinetik modeller kullanılarak kinetik çalışmalar yapılmış ve yalancı ikinci dereceden kinetik modelin en uygun model olduğu tespit edilmiştir (R2>0.99). Termodinamik parametreler (ΔGo, ΔHo, ΔSo) adsorpsiyon işleminin uygulanabilir, kendiliğinden gerçekleşen ve endotermik olduğunu göstermiştir. Ayrıca adsorpsiyon öncesi ve sonrası için FTIR analizleri gerçekleştirilmiştir. Bu sonuçlar, sulu çözeltilerden kristal viyolenin uzaklaştırılması için alternatif ve düşük maliyetli bir malzeme olarak kestane kabuğunun kullanılabileceğini göstermiştir.

Supporting Institution

TUBİTAK

Project Number

1919B011904047

Thanks

Bu çalışma, numarası 1919B011904047 olan 2209-A Üniversite Öğrencileri Araştırma Projeleri Destekleme Programı ile maddi olarak desteklenmiştir. Makalenin inceleme ve değerlendirme aşamasında yapmış oldukları katkılardan dolayı editör ve hakemlere teşekkür ederiz.

References

  • Ahmad, R. (2009). Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). Journal of Hazardous Materials, 171(1), 767–773. https://doi.org/10.1016/j.jhazmat.2009.06.060
  • Akınola, L. K., & Umar, A. M. (2015). Adsorption of crystal violet onto adsorbents derived from agricultural wastes: Kinetic and equilibrium studies. Journal of Applied Sciences and Environmental Management, 19(2), 279-288. http://dx.doi.org/10.4314/jasem.v19i2.15
  • Aksakal, O., & Ucun, H. (2010). Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (Reactive Red 195) onto Pinus sylvestris L. Journal of Hazardous Materials, 181(1-3), 666-672. https://doi.org/10.1016/j.jhazmat.2010.05.064
  • Alshabanat, M., Alsenani, G., & Almufarij, R. (2013). Removal of crystal violet dye from aqueous solutions onto date palm fiber by adsorption technique. Hindawi Publishing Corporation Journal of Chemistry, 6. https://doi.org/10.1155/2013/210239
  • Alventosa-deLara, E., Barredo-Damas, S., Alcaina-Miranda, M. I., & Iborra-Clar, M. I. (2012). Ultrafiltration technology with a ceramic membrane for reactive dye removal: Optimization of membrane performance. Journal of Hazardous Materials, 209–210, 492–500. https://doi.org/10.1016/j.jhazmat.2012.01.065
  • Asghar, A., Abdul Raman, A. A., & Wan Daud, W. M. A. (2015). Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: A review. Journal of Cleaner Production, 87, 826–838. https://doi.org/10.1016/j.jclepro.2014.09.010
  • Aslan, Ş., Sayıter, Y., & Öztürk, M. (2020). Sentetik atıksulardan atık çay sorbentine Cu+2 biyosorpsiyonu: Kinetikler, eşitlikler ve termodinamik. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(3), 359-367. http://dx.doi.org/10.5505/pajes.2020.27374
  • Bertolini, C. R., Izidoro, J. C., & Fungaro, C. P. (2013). Adsorption of crystal violet dye from aqueous solution onto zeolites from coal fly and bottom ashes. Orbital: The Electronic Journal of Chemistry, 5(3), 179-191.
  • Chakraborty, S., Chowdhury, S., & Saha, P. D. (2011). Adsorption of crystal violet from aqueous solution onto NaOH-modified rice husk. Carbohydrate Polymers, 86(4), 1533–1541. https://doi.org/10.1016/j.carbpol.2011.06.058
  • Chinniagounder, T., Shanker, M., & Nageswaran, S. (2011). Adsorptive removal of crystal violet dye using agricultural waste cocoa (theobroma cacao) shell. Research Journal of Chemical Sciences, 1(7), 38-45.
  • Deniz, F., & Kepekci, R. A., (2017). Bioremoval of malachite green from water sample by forestry waste mixture as potential biosorbent. Microchemical Journal, 132, 172–178. https://doi.org/10.1016/j.microc.2017.01.015
  • Döşemen, Y. (2009). Kestane Kabuğundan Aktif Karbon Üretimi. [Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü].
  • Çakmak, R. (2018). Akıllı şebekelerde fotovoltaik güç üretim sistemine sahip konutlar için akıllı talep yönetim sistemi [Doktora Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü].
  • Fabryanty, R., Valencia, C., Soetaredjo, F. E., Putro, J. N., Santoso, S. P., Kurniawan, A., Ju, Y. H., & Ismadji, S. (2017). Removal of crystal violet dye by adsorption using bentonite – alginate composite, Journal of Environmental Chemical Engineering, 5(6), 5677–5687. https://doi.org/10.1016/j.jece.2017.10.057
  • Farooq, U., Khan, M. A., Athar, M., & Kozinski, J. A. (2011). Effect of modification of environmentally friendly biosorbent wheat (triticum aestivum) on the biosorptive removal of cadmium(II) ions from aqueous solution. Chemical Engineering Journal, 171, 400–410.
  • Gemici, B. T., Ucun Ozel, H., & Ozel, H. B. (2019). Adsorption behaviors of crystal violet from aqueous solution using Anatolian black pine (Pinus nigra Arnold.): Kinetic and equilibrium studies. Separation Science and Technology, 55(3), 406-414. https://doi.org/10.1080/01496395.2019.1577268
  • Ghosh, K., Bar, N., Biawas, A. B., & Das, S. K. (2021). Elimination of crystal violet from synthetic medium by adsorption using unmodified and acid-modified eucalyptus leaves with MPR and GA application. Sustainable Chemistry and Pharmacy. 19, 1-12. https://doi.org/10.1016/j.scp.2020.100370
  • Han, R., Han, P., Cai, Z., Zhenhui, Z. & Mingsheng, T. (2008). Kinetics and isotherms of neutral red adsorption on peanut husk. Journal of Environmental Sciences, 20, 1035–1041. doi:10.1016/S1001-0742(08)62146-4
  • Han, X., Niu, X., & Ma, X., (2012). Adsorption characteristics of methylene blue on poplar leaf in batchmode: Equilibrium, kinetics and thermodynamics. Korean Journal of Chemical Engineering, 29, 494–502.
  • Kausar, A., Iqbal, M., Javed, A., Aftab, K., Nazli, Z.i.H., Bhatti, H.N., & Nouren, S. (2018). Dyes adsorption using clay and modified clay: A review. Journal of Molecular Liquids, 256, 395–407. https://doi.org/10.1016/j.molliq.2018.02.034
  • Kumar, R., & Ahmad, R. (2011). Biosorption of hazardous crystal violet dye from aqueous solution onto treated ginger waste (TGW). Desalination, 265, 112–118. https://doi.org/10.1016/j.desal.2010.07.040
  • Larini, S., El Mahtal, K., Miyah, Y., Tanji, K., Guissi, S., Boumchita, S., & Zerrouq, F. (2017). The adsorption of crystal violet from aqueous solution by using potato peels (solanum tuberosum): Equilibrium and kinetic studies, Journal of Materials and Environmental Sciences, 8(9), 3252- 3261.
  • Ozudogru, Y., & Merdivan, M. (2017). Metilen mavisinin modifiye edilmiş cystoseira barbata (stackhouse) c. agardh kullanılarak biyosorpsiyonu. Trakya University Journal of Natural Sciences, 18(2).
  • Pang, X., Sellaoui, L., Franco, D., Dotto, G.L., Georgin, J., Bajahzar, A., Belmabrouk, H., Ben Lamine, A., Bonilla-Petriciolet, A., & Li, Z. (2019). Adsorption of crystal violet on biomasses from pecan nutshell, para chestnut husk, araucaria bark and palm cactus: Experimental study and theoretical modeling via monolayer and double layer statistical physics models. Chemical Engineering Journal, 378(122101). https://doi.org/10.1016/j.cej.2019.122101
  • Pavan, F.A., Camacho, E.S., Lima, E.C., Dotto, G.L., Branco, V.T., & Dias, S.L. (2014). Formosa papaya seed powder (FPSP): Preparation, characterization and application as an alternative adsorbent for the removal of crystal violet from aqueous phase. Journal of Environmental Chemical Engineering, 2(1), 230–238. https://doi.org/10.1016/j.jece.2013.12.017
  • Sadri Moghaddam, S., Alavi Moghaddam, M. R., & Arami, M. (2010). Coagulation/flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology. Journal of Hazardous Materials, 175, 651–657. https://doi.org/10.1016/j.jhazmat.2009.10.058
  • Sen, T. K., Afroze S., & Ang, H. (2011). Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata. Water Air and Soil Pollutution, 218, 499–515. https://doi.org/10.1007/s11270-010-0663-y
  • Sulyman, M., Namiesnik, J., & Gierak, A. (2014). Utilization of new activated carbon derived from oak leaves for removal of crystal violet from aqueous solution, Polish Journal of Environmental Studies, 23(6), 2223-2232. https://doi.org/10.15244/pjoes/26764
  • Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209, 172– 184. https://doi.org/10.1016/j.cis.2014.04.002
  • Wang, X. S., Liu, X., Wen, L., Zhou, Y., Jiang, Y., & Li, Z. (2008). Comparison of basic dye crystal violet removal from aqueous solution by low-cost biosorbents. Separation Science and Technology, 43(14), 3712–3731.
  • Zamouche, M., Habib, A., Saaidia, K., & Lehocine, M. B. (2020). Batch mode for adsorption of crystal violet by cedar cone forest waste. SN Applied Sciences, 2(198). https://doi.org/10.1007/s42452-020-1976-0

Isotherm, kinetics and thermodynamic analysis of dye removal from aqueous solutions using chestnut shell

Year 2022, Volume: 12 Issue: 4, 1158 - 1167, 15.10.2022
https://doi.org/10.17714/gumusfenbil.983162

Abstract

In this study, the removal of crystal violet dyes from aqueous solutions using chestnut shell was investigated. For this purpose, the effects of parameters such as initial dye concentration, adsorbent dosage, contact time, pH and temperature on adsorption performance were investigated. According to the results obtained, the removal efficiency increased with increasing temperature and adsorbent dosage. It was observed that the removal efficiency decreased when the initial dye concentration increased. In the isotherm studies using equilibrium adsorption data, the best results were obtained in the Langmuir isotherm and the maximum dye adsorption capacity under optimized conditions was calculated as 48.78 mg/g. Kinetic studies were carried out using pseudo-first and pseudo-second-order kinetic models and it was determined that the pseudo-second-order kinetic model was the most appropriate (R2>0.99). Thermodynamic parameters (ΔGo, ΔHo, ΔSo) showed that the adsorption process was feasible, spontaneous and endothermic. In addition, FTIR analyzes were performed before and after adsorption. These results showed that chestnut shell can be used as an alternative and low-cost material for the removal of crystal violet from aqueous solutions.

Project Number

1919B011904047

References

  • Ahmad, R. (2009). Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). Journal of Hazardous Materials, 171(1), 767–773. https://doi.org/10.1016/j.jhazmat.2009.06.060
  • Akınola, L. K., & Umar, A. M. (2015). Adsorption of crystal violet onto adsorbents derived from agricultural wastes: Kinetic and equilibrium studies. Journal of Applied Sciences and Environmental Management, 19(2), 279-288. http://dx.doi.org/10.4314/jasem.v19i2.15
  • Aksakal, O., & Ucun, H. (2010). Equilibrium, kinetic and thermodynamic studies of the biosorption of textile dye (Reactive Red 195) onto Pinus sylvestris L. Journal of Hazardous Materials, 181(1-3), 666-672. https://doi.org/10.1016/j.jhazmat.2010.05.064
  • Alshabanat, M., Alsenani, G., & Almufarij, R. (2013). Removal of crystal violet dye from aqueous solutions onto date palm fiber by adsorption technique. Hindawi Publishing Corporation Journal of Chemistry, 6. https://doi.org/10.1155/2013/210239
  • Alventosa-deLara, E., Barredo-Damas, S., Alcaina-Miranda, M. I., & Iborra-Clar, M. I. (2012). Ultrafiltration technology with a ceramic membrane for reactive dye removal: Optimization of membrane performance. Journal of Hazardous Materials, 209–210, 492–500. https://doi.org/10.1016/j.jhazmat.2012.01.065
  • Asghar, A., Abdul Raman, A. A., & Wan Daud, W. M. A. (2015). Advanced oxidation processes for in-situ production of hydrogen peroxide/hydroxyl radical for textile wastewater treatment: A review. Journal of Cleaner Production, 87, 826–838. https://doi.org/10.1016/j.jclepro.2014.09.010
  • Aslan, Ş., Sayıter, Y., & Öztürk, M. (2020). Sentetik atıksulardan atık çay sorbentine Cu+2 biyosorpsiyonu: Kinetikler, eşitlikler ve termodinamik. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 27(3), 359-367. http://dx.doi.org/10.5505/pajes.2020.27374
  • Bertolini, C. R., Izidoro, J. C., & Fungaro, C. P. (2013). Adsorption of crystal violet dye from aqueous solution onto zeolites from coal fly and bottom ashes. Orbital: The Electronic Journal of Chemistry, 5(3), 179-191.
  • Chakraborty, S., Chowdhury, S., & Saha, P. D. (2011). Adsorption of crystal violet from aqueous solution onto NaOH-modified rice husk. Carbohydrate Polymers, 86(4), 1533–1541. https://doi.org/10.1016/j.carbpol.2011.06.058
  • Chinniagounder, T., Shanker, M., & Nageswaran, S. (2011). Adsorptive removal of crystal violet dye using agricultural waste cocoa (theobroma cacao) shell. Research Journal of Chemical Sciences, 1(7), 38-45.
  • Deniz, F., & Kepekci, R. A., (2017). Bioremoval of malachite green from water sample by forestry waste mixture as potential biosorbent. Microchemical Journal, 132, 172–178. https://doi.org/10.1016/j.microc.2017.01.015
  • Döşemen, Y. (2009). Kestane Kabuğundan Aktif Karbon Üretimi. [Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü].
  • Çakmak, R. (2018). Akıllı şebekelerde fotovoltaik güç üretim sistemine sahip konutlar için akıllı talep yönetim sistemi [Doktora Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü].
  • Fabryanty, R., Valencia, C., Soetaredjo, F. E., Putro, J. N., Santoso, S. P., Kurniawan, A., Ju, Y. H., & Ismadji, S. (2017). Removal of crystal violet dye by adsorption using bentonite – alginate composite, Journal of Environmental Chemical Engineering, 5(6), 5677–5687. https://doi.org/10.1016/j.jece.2017.10.057
  • Farooq, U., Khan, M. A., Athar, M., & Kozinski, J. A. (2011). Effect of modification of environmentally friendly biosorbent wheat (triticum aestivum) on the biosorptive removal of cadmium(II) ions from aqueous solution. Chemical Engineering Journal, 171, 400–410.
  • Gemici, B. T., Ucun Ozel, H., & Ozel, H. B. (2019). Adsorption behaviors of crystal violet from aqueous solution using Anatolian black pine (Pinus nigra Arnold.): Kinetic and equilibrium studies. Separation Science and Technology, 55(3), 406-414. https://doi.org/10.1080/01496395.2019.1577268
  • Ghosh, K., Bar, N., Biawas, A. B., & Das, S. K. (2021). Elimination of crystal violet from synthetic medium by adsorption using unmodified and acid-modified eucalyptus leaves with MPR and GA application. Sustainable Chemistry and Pharmacy. 19, 1-12. https://doi.org/10.1016/j.scp.2020.100370
  • Han, R., Han, P., Cai, Z., Zhenhui, Z. & Mingsheng, T. (2008). Kinetics and isotherms of neutral red adsorption on peanut husk. Journal of Environmental Sciences, 20, 1035–1041. doi:10.1016/S1001-0742(08)62146-4
  • Han, X., Niu, X., & Ma, X., (2012). Adsorption characteristics of methylene blue on poplar leaf in batchmode: Equilibrium, kinetics and thermodynamics. Korean Journal of Chemical Engineering, 29, 494–502.
  • Kausar, A., Iqbal, M., Javed, A., Aftab, K., Nazli, Z.i.H., Bhatti, H.N., & Nouren, S. (2018). Dyes adsorption using clay and modified clay: A review. Journal of Molecular Liquids, 256, 395–407. https://doi.org/10.1016/j.molliq.2018.02.034
  • Kumar, R., & Ahmad, R. (2011). Biosorption of hazardous crystal violet dye from aqueous solution onto treated ginger waste (TGW). Desalination, 265, 112–118. https://doi.org/10.1016/j.desal.2010.07.040
  • Larini, S., El Mahtal, K., Miyah, Y., Tanji, K., Guissi, S., Boumchita, S., & Zerrouq, F. (2017). The adsorption of crystal violet from aqueous solution by using potato peels (solanum tuberosum): Equilibrium and kinetic studies, Journal of Materials and Environmental Sciences, 8(9), 3252- 3261.
  • Ozudogru, Y., & Merdivan, M. (2017). Metilen mavisinin modifiye edilmiş cystoseira barbata (stackhouse) c. agardh kullanılarak biyosorpsiyonu. Trakya University Journal of Natural Sciences, 18(2).
  • Pang, X., Sellaoui, L., Franco, D., Dotto, G.L., Georgin, J., Bajahzar, A., Belmabrouk, H., Ben Lamine, A., Bonilla-Petriciolet, A., & Li, Z. (2019). Adsorption of crystal violet on biomasses from pecan nutshell, para chestnut husk, araucaria bark and palm cactus: Experimental study and theoretical modeling via monolayer and double layer statistical physics models. Chemical Engineering Journal, 378(122101). https://doi.org/10.1016/j.cej.2019.122101
  • Pavan, F.A., Camacho, E.S., Lima, E.C., Dotto, G.L., Branco, V.T., & Dias, S.L. (2014). Formosa papaya seed powder (FPSP): Preparation, characterization and application as an alternative adsorbent for the removal of crystal violet from aqueous phase. Journal of Environmental Chemical Engineering, 2(1), 230–238. https://doi.org/10.1016/j.jece.2013.12.017
  • Sadri Moghaddam, S., Alavi Moghaddam, M. R., & Arami, M. (2010). Coagulation/flocculation process for dye removal using sludge from water treatment plant: optimization through response surface methodology. Journal of Hazardous Materials, 175, 651–657. https://doi.org/10.1016/j.jhazmat.2009.10.058
  • Sen, T. K., Afroze S., & Ang, H. (2011). Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata. Water Air and Soil Pollutution, 218, 499–515. https://doi.org/10.1007/s11270-010-0663-y
  • Sulyman, M., Namiesnik, J., & Gierak, A. (2014). Utilization of new activated carbon derived from oak leaves for removal of crystal violet from aqueous solution, Polish Journal of Environmental Studies, 23(6), 2223-2232. https://doi.org/10.15244/pjoes/26764
  • Yagub, M. T., Sen, T. K., Afroze, S., & Ang, H. M. (2014). Dye and its removal from aqueous solution by adsorption: A review. Advances in Colloid and Interface Science, 209, 172– 184. https://doi.org/10.1016/j.cis.2014.04.002
  • Wang, X. S., Liu, X., Wen, L., Zhou, Y., Jiang, Y., & Li, Z. (2008). Comparison of basic dye crystal violet removal from aqueous solution by low-cost biosorbents. Separation Science and Technology, 43(14), 3712–3731.
  • Zamouche, M., Habib, A., Saaidia, K., & Lehocine, M. B. (2020). Batch mode for adsorption of crystal violet by cedar cone forest waste. SN Applied Sciences, 2(198). https://doi.org/10.1007/s42452-020-1976-0
There are 31 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Betül Tuba Gemici 0000-0003-1731-536X

Aybüke Özden This is me 0000-0002-1035-4342

Project Number 1919B011904047
Publication Date October 15, 2022
Submission Date August 15, 2021
Acceptance Date September 29, 2022
Published in Issue Year 2022 Volume: 12 Issue: 4

Cite

APA Gemici, B. T., & Özden, A. (2022). Kestane kabuğu kullanılarak sulu çözeltilerden boyar madde gideriminin izoterm, kinetik ve termodinamik analizi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 12(4), 1158-1167. https://doi.org/10.17714/gumusfenbil.983162