Research Article
BibTex RIS Cite

Dolgu Zeminine Ait Birim Hacim Ağırlık Değeri Değişiminin Konsol Bir İstinat Duvarının Sismik Davranışı Üzerindeki Etkileri

Year 2015, Volume: 5 Issue: 2, 87 - 100, 30.04.2015
https://doi.org/10.17714/gufbed.2015.05.008

Abstract

Bu çalışmanın temel amacı, zemin-yapı etkileşimini dikkate alarak deprem etkisindeki konsol bir istinat duvarının davranışı üzerinde dolgu zeminine ait birim hacim ağırlık değeri değişiminin etkilerini incelemektir. Bu amaçla üç farklı temel zemini sistemi ve dört farklı dolgu birim hacim ağırlığı değeri dikkate alınarak zemin-yapı modelinin zaman tanım alanında sonlu elemanlar yöntemiyle dinamik analizleri yapılmıştır. Oluşturulan modelde dolgu-konsol istinat duvarı etkileşimini dikkate alabilmek için ara yüzey elamanları kullanılmıştır. Zemin ortamın sonsuzluğundan kaynaklanan radyasyonel sönüm ve dalga yansıma etkileri zemin sınırlarında viskoz sönümleyiciler kullanılarak göz önüne alınmıştır. Ayrıca zeminin malzeme bakımından doğrusal olmayan davranışı Drucker-Prager kırılma kriteri ile dikkate alınmıştır. Zemin-yapı modelinin dinamik analizleri 17 Ağustos 1999 Kocaeli depremi Yarımca kaydı Kuzey-Güney bileşeni kullanılarak ANSYS programı ile gerçekleştirilmiştir. Çözümlemelerde doğrudan entegrasyon yöntemlerinden Newmark yaklaşımı kullanılmıştır. Çözümleme sonuçları duvar yatay yerdeğiştirmeleri ve duvar kritik kesitlerinde meydana gelen gerilmeler üzerinden karşılaştırmalı olarak değerlendirilmiştir. Elde edilen sonuçlar, zemin-yapı etkileşiminin konsol istinat duvarının deprem davranışı üzerinde etkin bir parametre olduğunu ve tasarım sürecinde mutlaka dikkate alınması gerektiğini, ancak dolgu zemini birim hacim ağırlığı değeri değişiminin duvar sismik davranışı üzerinde ihmal edilebilir düzeylerde bir etkiye sahip olduğunu göstermiştir.

References

  • Akkar, S., 2008. Türkiye’de sismik aktivite ve tasarım spektrumları, Binalar için deprem mühendisliği temel ilkeler, Canbay, E., Ersoy, U., Özcebe, G., Sucuoğlu, H. ve Wasti, S.T. (eds.), ODTÜ Geliştirme Vakfı Yayıncılık ve İletişim A.Ş., Ankara, Türkiye, pp. 17-34.
  • ANSYS 13.0, 2010. ANSYS Inc., Canonsburg, PA.
  • Aydınoğlu, M.N., 1977. Üstyapı-Zemin Ortak Sisteminin Deprem Hesabı, Doktora Tezi, İstanbul Teknik Üniversitesi, İnşaat Fakültesi, İstanbul.
  • Çakır, T., 2010. Zemin-Depo Dış Duvarı-Sıvı Sistemlerinin Deprem Davranış-larının İncelenmesi, Doktora Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon.
  • Çakır, T., 2013. Evaluation of the effect of earthquake frequency content on seismic behavior of cantilever retaining wall including soil-structure interaction, Soil Dynamics and Earthquake Engineering, 45, 96-111.
  • Çakır, T., 2014. Influence of wall flexibility on dynamic response of cantilever retaining walls, Structural Engineering and Mechanics, 49, 1, 1-22.
  • DBYBHY, 2007. Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, Bayındırlık ve İskan Bakanlığı.
  • EAK-2000, 2003. Greek Seismic Code, Earthquake Planning and Protection Organization, Athens.
  • Eurocode-8, 2003. Design of Structures for Earthquake Resistance - Part 5: Foundations, Retaining Structures and Geotechnical Aspects, Final draft, European Committee for Standardization, Brussels, Belgium.
  • Gazetas, G., Psarropoulos, P.N., Anastasopoulos, I. ve Gerolymos, N., 2004. Seismic behaviour of flexible retaining systems subjected to short-duration moderately strong excitation, Soil Dynamics and Earthquake Engineering, 24, 537-550.
  • Giarlelis, C. ve Mylonakis, G., 2011. Interpretation of dynamic retaining wall model tests in light of elastic and plastic solutions, Soil Dynamics and Earthquake Engineering, 31, 16-24.
  • IS-1893, 2002. Indian Standard Criteria for Earthquake Resistant Design of Structures, Part 1, General Provisions and Buildings.
  • Kloukinas, P., Penna, A., di Santolo, A.S., Bhattacharya, S., Dietz, M., Dihoru, L., Evangelista, A., Simonelli, A.L., Taylor, C. ve Mylonakis, G., 2012. Experimental Investigation of Dynamic Behavior of Cantilever Retaining Walls, Second International Conference on Performance-Based Design in Earthquake Geotechnical Engineering, May 28-30, Taormina, Italy, paper no. 13.08.
  • Lin, Y.L., Leng, W.M., Yang, G.L., Zhao, L.H., Li, L. ve Yang, J.S., 2015. Seismic active earth pressure of cohesive-frictional soil on retaining wall based on a slice analysis method, Soil Dynamics and Earthquake Engineering, 70, 133-147.
  • Liu, Q., Tian, Y. ve Deng, F., 2014. Dynamic analysis of flexible cantilever wall retaining elastic soil by a modified Vlasov–Leontiev model, Soil Dynamics and Earthquake Engineering, 63, 217-225.
  • Lysmer, J. ve Kuhlemeyer, R.L., 1969. Finite dynamic model for infinite media, ASCE Engineering Mechanics Division Journal, 95, 859-877.
  • Madabhushi, S.P.G. ve Zeng, X., 2007. Simulating seismic response of cantilever retaining walls, ASCE Journal of Geotechnical and Geoenvironmental Engineering, , 133, 539-549.
  • Mononobe, N. ve Matsuo, H., 1929. On the determination of earth pressures during earthquakes, Proceedings of World Engineering Congress, 9, Japan. pp.179-187.
  • Nazarian, H.N. ve Hadjian, A.H., 1979. Earthquake-induced lateral soil pressures on structures, ASCE Journal of the Geotechnical Engineering Division, 105, 1049-1066.
  • Okabe, S., 1924. General theory of earth pressure and seismic stability of retaining wall and dam, Journal of Japanese Society of Civil Engineering, 10, 1277-1323.
  • Psarropoulos, P.N., Klonaris, G. ve Gazetas, G., 2005. Seismic earth pressures on rigid and flexible retaining walls, Soil Dynamics and Earthquake Engineering, 25, 795-809.
  • Sucuoğlu, H., 2008. Türkiye’de sismik aktivite ve tasarım spektrumları, Binalar için deprem mühendisliği temel ilkeler, Canbay, E., Ersoy, U., Özcebe, G., Sucuoğlu, H. ve Wasti, S.T. (eds.), ODTÜ Geliştirme Vakfı Yayıncılık ve İletişim A.Ş., Ankara, Türkiye. pp. 35-56.
  • Theodorakopoulos, D.D., Chassiakos, A.P. ve Beskos, D.E., 2001. Dynamic pressures on rigid cantilever walls retaining poroelastic soil media. Part I: First method of solution, Soil Dynamics and Earthquake Engineering, 21, 315-338.
  • Veletsos, A.S. ve Younan, A.H., 1994. Dynamic soil pressures on rigid vertical walls, Earthquake Engineering and Structural Dynamics, 23, 3, 275-301.
  • Veletsos, A.S. ve Younan, A.H., 1997. Dynamic Response of Cantilever Walls, ASCE Journal of Geotechnical Engineering, 123, 2, 161-172.
  • Wilson, P. ve Elgamal, A., 2015. Shake table lateral earth pressure testing with dense c-ϕ backfill, Soil Dynamics and Earthquake Engineering, 71, 13-26.
  • Xu, S.Y., Shamsabadi, A. ve Taciroglu, E., 2015. Evaluation of active and passive seismic earth pressures considering internal friction and cohesion, Soil Dynamics and Earthquake Engineering, 70, 30-47.

Effects of the Variation of Unit Weight of Backfill Soil on Seismic Response of A Cantilever Retaining Wall

Year 2015, Volume: 5 Issue: 2, 87 - 100, 30.04.2015
https://doi.org/10.17714/gufbed.2015.05.008

Abstract

The main aim of this study is to investigate effects of the variation of unit weight of backfill soil on the behavior of a cantilever retaining wall under earthquake effect considering soil-structure interaction. For this purpose, taking into account three different subsoil systems and four different unit weights of the backfill soil, the dynamic analyses of soil-structure model were done in time domain through finite element method. Interface elements were used to consider backfill-cantilever retaining wall interaction in the created model. Radiational damping generated from the infinity of soil medium and wave reflection effects were taken into consideration by using viscous dampers at the soil boundaries. Furthermore, nonlinear behavior of soil material was considered by means of Drucker-Prager failure criterion. The dynamic analyses of the soil-structure model were carried out by using North-South component of the ground motion recorded during August 17, 1999 Kocaeli Earthquake in Yarımca station. Newmark’s direct integration method was used in the analyses. The analysis results were comparatively evaluated in terms of the lateral displacements of the wall and the stresses occurred in the critical sections of the wall. The obtained results showed that soil-structure interaction is an effective parameter on earthquake behavior of the cantilever retaining wall and it must be definitely considered in design process. However, the variation of the unit weight of backfill soil has a negligible effect on seismic response of the wall.

References

  • Akkar, S., 2008. Türkiye’de sismik aktivite ve tasarım spektrumları, Binalar için deprem mühendisliği temel ilkeler, Canbay, E., Ersoy, U., Özcebe, G., Sucuoğlu, H. ve Wasti, S.T. (eds.), ODTÜ Geliştirme Vakfı Yayıncılık ve İletişim A.Ş., Ankara, Türkiye, pp. 17-34.
  • ANSYS 13.0, 2010. ANSYS Inc., Canonsburg, PA.
  • Aydınoğlu, M.N., 1977. Üstyapı-Zemin Ortak Sisteminin Deprem Hesabı, Doktora Tezi, İstanbul Teknik Üniversitesi, İnşaat Fakültesi, İstanbul.
  • Çakır, T., 2010. Zemin-Depo Dış Duvarı-Sıvı Sistemlerinin Deprem Davranış-larının İncelenmesi, Doktora Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon.
  • Çakır, T., 2013. Evaluation of the effect of earthquake frequency content on seismic behavior of cantilever retaining wall including soil-structure interaction, Soil Dynamics and Earthquake Engineering, 45, 96-111.
  • Çakır, T., 2014. Influence of wall flexibility on dynamic response of cantilever retaining walls, Structural Engineering and Mechanics, 49, 1, 1-22.
  • DBYBHY, 2007. Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, Bayındırlık ve İskan Bakanlığı.
  • EAK-2000, 2003. Greek Seismic Code, Earthquake Planning and Protection Organization, Athens.
  • Eurocode-8, 2003. Design of Structures for Earthquake Resistance - Part 5: Foundations, Retaining Structures and Geotechnical Aspects, Final draft, European Committee for Standardization, Brussels, Belgium.
  • Gazetas, G., Psarropoulos, P.N., Anastasopoulos, I. ve Gerolymos, N., 2004. Seismic behaviour of flexible retaining systems subjected to short-duration moderately strong excitation, Soil Dynamics and Earthquake Engineering, 24, 537-550.
  • Giarlelis, C. ve Mylonakis, G., 2011. Interpretation of dynamic retaining wall model tests in light of elastic and plastic solutions, Soil Dynamics and Earthquake Engineering, 31, 16-24.
  • IS-1893, 2002. Indian Standard Criteria for Earthquake Resistant Design of Structures, Part 1, General Provisions and Buildings.
  • Kloukinas, P., Penna, A., di Santolo, A.S., Bhattacharya, S., Dietz, M., Dihoru, L., Evangelista, A., Simonelli, A.L., Taylor, C. ve Mylonakis, G., 2012. Experimental Investigation of Dynamic Behavior of Cantilever Retaining Walls, Second International Conference on Performance-Based Design in Earthquake Geotechnical Engineering, May 28-30, Taormina, Italy, paper no. 13.08.
  • Lin, Y.L., Leng, W.M., Yang, G.L., Zhao, L.H., Li, L. ve Yang, J.S., 2015. Seismic active earth pressure of cohesive-frictional soil on retaining wall based on a slice analysis method, Soil Dynamics and Earthquake Engineering, 70, 133-147.
  • Liu, Q., Tian, Y. ve Deng, F., 2014. Dynamic analysis of flexible cantilever wall retaining elastic soil by a modified Vlasov–Leontiev model, Soil Dynamics and Earthquake Engineering, 63, 217-225.
  • Lysmer, J. ve Kuhlemeyer, R.L., 1969. Finite dynamic model for infinite media, ASCE Engineering Mechanics Division Journal, 95, 859-877.
  • Madabhushi, S.P.G. ve Zeng, X., 2007. Simulating seismic response of cantilever retaining walls, ASCE Journal of Geotechnical and Geoenvironmental Engineering, , 133, 539-549.
  • Mononobe, N. ve Matsuo, H., 1929. On the determination of earth pressures during earthquakes, Proceedings of World Engineering Congress, 9, Japan. pp.179-187.
  • Nazarian, H.N. ve Hadjian, A.H., 1979. Earthquake-induced lateral soil pressures on structures, ASCE Journal of the Geotechnical Engineering Division, 105, 1049-1066.
  • Okabe, S., 1924. General theory of earth pressure and seismic stability of retaining wall and dam, Journal of Japanese Society of Civil Engineering, 10, 1277-1323.
  • Psarropoulos, P.N., Klonaris, G. ve Gazetas, G., 2005. Seismic earth pressures on rigid and flexible retaining walls, Soil Dynamics and Earthquake Engineering, 25, 795-809.
  • Sucuoğlu, H., 2008. Türkiye’de sismik aktivite ve tasarım spektrumları, Binalar için deprem mühendisliği temel ilkeler, Canbay, E., Ersoy, U., Özcebe, G., Sucuoğlu, H. ve Wasti, S.T. (eds.), ODTÜ Geliştirme Vakfı Yayıncılık ve İletişim A.Ş., Ankara, Türkiye. pp. 35-56.
  • Theodorakopoulos, D.D., Chassiakos, A.P. ve Beskos, D.E., 2001. Dynamic pressures on rigid cantilever walls retaining poroelastic soil media. Part I: First method of solution, Soil Dynamics and Earthquake Engineering, 21, 315-338.
  • Veletsos, A.S. ve Younan, A.H., 1994. Dynamic soil pressures on rigid vertical walls, Earthquake Engineering and Structural Dynamics, 23, 3, 275-301.
  • Veletsos, A.S. ve Younan, A.H., 1997. Dynamic Response of Cantilever Walls, ASCE Journal of Geotechnical Engineering, 123, 2, 161-172.
  • Wilson, P. ve Elgamal, A., 2015. Shake table lateral earth pressure testing with dense c-ϕ backfill, Soil Dynamics and Earthquake Engineering, 71, 13-26.
  • Xu, S.Y., Shamsabadi, A. ve Taciroglu, E., 2015. Evaluation of active and passive seismic earth pressures considering internal friction and cohesion, Soil Dynamics and Earthquake Engineering, 70, 30-47.
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Tufan Çakır

Osman Kara This is me

Publication Date April 30, 2015
Submission Date April 30, 2015
Published in Issue Year 2015 Volume: 5 Issue: 2

Cite

APA Çakır, T., & Kara, O. (2015). Dolgu Zeminine Ait Birim Hacim Ağırlık Değeri Değişiminin Konsol Bir İstinat Duvarının Sismik Davranışı Üzerindeki Etkileri. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 5(2), 87-100. https://doi.org/10.17714/gufbed.2015.05.008