BibTex RIS Cite

Determination of Plastic Energy Demands of Reinforced Concrete Frames under Code Specific Earthquake Levels

Year 2015, Volume: 5 Issue: 2, 101 - 113, 04.05.2015
https://doi.org/10.17714/gufbed.2015.05.009

Abstract

Inelastic deformation and plastic energy dissipation capabilities of reinforced concrete sections without any local and total collapse have an importance for earthquake safety in order to achieve limiting damage. Calculation of plastic energy dissipation of reinforced concrete frames due to nonlinear behavior is investigated. Nonlinear static pushover analyses of three, four and five-story reinforced concrete frames designed according to requirements of Turkish Seismic Design Code are conducted and then plastic energy diagrams are generated by considering the plastic sections formed at each load increment step of pushover analysis. Modal displacement demands and corresponding plastic energy demands of the frames are determined for different earthquake levels. Therefore, the energy dissipation capabilities of reinforced concrete frames designed according to Turkish Seismic Design Code are examined. Plastic energy demand of frames vary with earthquake level.

References

  • Housner, G.W., 1956. Limit Design of Structures to Resist Earthquakes, Proceedings of the 1st World Conference on Earthquake Engineering, Earthquake Engineering Research Institute, 5, 1-13, Oakland, California.
  • Zahrah, T.F. ve Hall, W.J, 1984. Earthquake Energy Absorbtion in SDOF Structures, Journal of Structural Engineering, 110, 8, 1757-1773.
  • Akiyama, H., 1985. Earthquake-Resistant Limit-State Design for Buildings, Tokyo Üniversitesi Basısı, Japonya.
  • Fajfar, P., Vidic, T. ve Fischinger, M., 1989. Seismic Design in Medium- and Long-Period Structures, Earthquake Engineering and Structural Dynamics, 18, 1133-1144.
  • Kuwamura, H. ve Galambos, T.V., 1989. Earthquake Load for Structural Reliability, Journal of Structural Engineering, 115, 6, 1446-1462.
  • Uang, C.-M., Bertero, V.V., 1990. Evaluation of Seismic Energy in Structures, Earthquake Engineering and Structural Dynamics, 19, 1, 77-90.
  • Manfredi, G., 2001. Evaluation of Seismic Energy Demand, Earthquake Engineering and Structural Dynamics, 30, 485-499.
  • Lee, S.-S., ve Goel, S.C., 2001. Performance-Based Design of Steel Moment Frames Using a Target Drift and Yield Mechanism, Research Report No. UMCEE 01-17, Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan.
  • Riddell, R. ve Garcia, J.E., 2001. Hysteretic Energy Spectrum and Damage Control, Earthquake Engineering and Structural Dynamics, 30, 1791-1816.
  • Akbaş, B. ve Shen, J., 2003. Depreme Dayanıklı Yapı Tasarımı ve Enerji Kavramı, İMO Teknik Dergi, Yazı 192, 2877-2901.
  • Kunnath, S.K. ve Chai, Y.H., 2004. Cumulative Damage-Based Inelastic Cyclic Demand Spectrum, Earthquake Engineering and Structural Dynamics, 33, 499-520.
  • Kunnath, S.K. ve Hu, Q., 2004. Evaluation of Cyclic Demand in Ductile RC Structures, 13th World Conference on Earthquake Engineering, Paper No: 290, August 1-6, Canada.
  • Kalkan, E. ve Kunnath, S.K., 2008. Relevance of Absolute and Relative Energy Content in Seismic Evaluation of Structures, Advances in Structural Engineering, 11, 1.
  • Leelataviwat, S., Saewon, W., Goel, S.C., 2008. An Energy Based Method for Seismic Evaluation of Structures, 14th World Conference on Earthquake Engineering, October 12-17, Bejing, China.
  • Leelataviwat, S., Goel, S.C. ve Stojadinovic, B., 2002. Energy-Based Seismic Design of Structures Using Yield Mechanism and Target Drift, Journal of Structural Engineering, 128, 1046-1054.
  • Lee, S.-S., Goel, S.C. ve Chao, S.-H., 2004. Performance-Based Seismic Design of Steel Moment Frames Using Target Drift and Yield Mechanism, 13th World Conference on Earthquake Engineering, Paper No: 266, August 1-6, Canada.
  • Liao, W.-C. ve Goel, S.C., 2012. Performance-Based Plastic Design and Energy-Based Evaluation of Seismic Resistant RC Moment Frame, Journal of Marine Science and Technology, 20, 3, 304-310.
  • Bai, J. ve Ou, J., 2012. Plastic Limit-State Design of Frame Structures Based on the Strong-Column Weak-Beam Failure Mechanism, 15th World Conference on Earthquake Engineering, Lisbon.
  • Deprem Yönetmeliği – DBYBHY, 2007. Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, Bayındırlık ve İskan Bakanlığı, Ankara.
  • TS500, 2000. Betonarme Yapıların Tasarım ve Yapım Kuralları, Türk Standartları Enstitüsü, Ankara.
  • SAP2000, 2014. Integrated Structural Analysis and Design Software, Version 16.1.0, Computers and Structures Inc., Berkeley, CA.

Farklı Deprem Düzeyleri İçin Betonarme Çerçevelerin Plastik Enerji İstemlerinin Belirlenmesi

Year 2015, Volume: 5 Issue: 2, 101 - 113, 04.05.2015
https://doi.org/10.17714/gufbed.2015.05.009

Abstract

Betonarme kesitlerin kısmi veya toptan göçme mekanizmaları oluşmaksızın elastik ötesi şekildeğiştirme yapabilmeleri ve buna bağlı olarak plastik enerji tüketebilme yetenekleri şiddetli depremlerin daha az hasarla atlatılması bakımından önemlidir. Bu çalışmada betonarme çerçevelerde doğrusal olmayan davranış sonucu tüketilen plastik enerjinin hesaplanması araştırılmıştır. Türk Deprem Yönetmeliği’ne uygun olarak boyutlandırılan üç, dört ve beş katlı betonarme çerçevelerin statik artımsal itme analizleri gerçekleştirilmiş ve her itme adımında oluşan plastik kesitler dikkate alınarak plastik enerji diyagramları oluşturulmuştur. Çerçevelerin farklı deprem düzeyleri için doğrusal olmayan modal yerdeğiştirme istemi ve buna karşılık gelen plastik enerji istemi belirlenmiştir. Böylece yönetmelik kuralları çerçevesinde boyutlandırılan betonarme çerçevelerin plastik enerji tüketebilme yetenekleri irdelenmiştir. Sonuçlar böyle bir potansiyelin varlığını doğrulamaktadır.    

References

  • Housner, G.W., 1956. Limit Design of Structures to Resist Earthquakes, Proceedings of the 1st World Conference on Earthquake Engineering, Earthquake Engineering Research Institute, 5, 1-13, Oakland, California.
  • Zahrah, T.F. ve Hall, W.J, 1984. Earthquake Energy Absorbtion in SDOF Structures, Journal of Structural Engineering, 110, 8, 1757-1773.
  • Akiyama, H., 1985. Earthquake-Resistant Limit-State Design for Buildings, Tokyo Üniversitesi Basısı, Japonya.
  • Fajfar, P., Vidic, T. ve Fischinger, M., 1989. Seismic Design in Medium- and Long-Period Structures, Earthquake Engineering and Structural Dynamics, 18, 1133-1144.
  • Kuwamura, H. ve Galambos, T.V., 1989. Earthquake Load for Structural Reliability, Journal of Structural Engineering, 115, 6, 1446-1462.
  • Uang, C.-M., Bertero, V.V., 1990. Evaluation of Seismic Energy in Structures, Earthquake Engineering and Structural Dynamics, 19, 1, 77-90.
  • Manfredi, G., 2001. Evaluation of Seismic Energy Demand, Earthquake Engineering and Structural Dynamics, 30, 485-499.
  • Lee, S.-S., ve Goel, S.C., 2001. Performance-Based Design of Steel Moment Frames Using a Target Drift and Yield Mechanism, Research Report No. UMCEE 01-17, Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan.
  • Riddell, R. ve Garcia, J.E., 2001. Hysteretic Energy Spectrum and Damage Control, Earthquake Engineering and Structural Dynamics, 30, 1791-1816.
  • Akbaş, B. ve Shen, J., 2003. Depreme Dayanıklı Yapı Tasarımı ve Enerji Kavramı, İMO Teknik Dergi, Yazı 192, 2877-2901.
  • Kunnath, S.K. ve Chai, Y.H., 2004. Cumulative Damage-Based Inelastic Cyclic Demand Spectrum, Earthquake Engineering and Structural Dynamics, 33, 499-520.
  • Kunnath, S.K. ve Hu, Q., 2004. Evaluation of Cyclic Demand in Ductile RC Structures, 13th World Conference on Earthquake Engineering, Paper No: 290, August 1-6, Canada.
  • Kalkan, E. ve Kunnath, S.K., 2008. Relevance of Absolute and Relative Energy Content in Seismic Evaluation of Structures, Advances in Structural Engineering, 11, 1.
  • Leelataviwat, S., Saewon, W., Goel, S.C., 2008. An Energy Based Method for Seismic Evaluation of Structures, 14th World Conference on Earthquake Engineering, October 12-17, Bejing, China.
  • Leelataviwat, S., Goel, S.C. ve Stojadinovic, B., 2002. Energy-Based Seismic Design of Structures Using Yield Mechanism and Target Drift, Journal of Structural Engineering, 128, 1046-1054.
  • Lee, S.-S., Goel, S.C. ve Chao, S.-H., 2004. Performance-Based Seismic Design of Steel Moment Frames Using Target Drift and Yield Mechanism, 13th World Conference on Earthquake Engineering, Paper No: 266, August 1-6, Canada.
  • Liao, W.-C. ve Goel, S.C., 2012. Performance-Based Plastic Design and Energy-Based Evaluation of Seismic Resistant RC Moment Frame, Journal of Marine Science and Technology, 20, 3, 304-310.
  • Bai, J. ve Ou, J., 2012. Plastic Limit-State Design of Frame Structures Based on the Strong-Column Weak-Beam Failure Mechanism, 15th World Conference on Earthquake Engineering, Lisbon.
  • Deprem Yönetmeliği – DBYBHY, 2007. Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, Bayındırlık ve İskan Bakanlığı, Ankara.
  • TS500, 2000. Betonarme Yapıların Tasarım ve Yapım Kuralları, Türk Standartları Enstitüsü, Ankara.
  • SAP2000, 2014. Integrated Structural Analysis and Design Software, Version 16.1.0, Computers and Structures Inc., Berkeley, CA.
There are 21 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Taner Uçar

Onur Merter

Publication Date May 4, 2015
Submission Date May 4, 2015
Published in Issue Year 2015 Volume: 5 Issue: 2

Cite

APA Uçar, T., & Merter, O. (2015). Farklı Deprem Düzeyleri İçin Betonarme Çerçevelerin Plastik Enerji İstemlerinin Belirlenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 5(2), 101-113. https://doi.org/10.17714/gufbed.2015.05.009