Tek serbestlik dereceli esnek manipülatörün dinamik modellenmesi ve titreşim analizi üzerine çalışma
Year 2023,
Volume: 13 Issue: 1, 47 - 56, 15.01.2023
Mehmet Uyar
Abstract
Bu çalışmada, tek bağlantılı esnek manipülatörün SimMechanics tabanlı dinamik modellemesi ve titreşim analizi çalışılır. Manipülatörün modellenmesi için bir esnek kiriş modeli kurulur. Farklı hareket eğrileri ile hareket ettirilen manipülatörün uç nokta ivme titreşim tepkilerini elde etmek için geçici durum analizi gerçekleştirilir. Farklı durumlar için hem deneysel hem de simülasyon ivme sonuçları sunulur. Simülasyon sonuçlarının deney sonuçları ile doğrulanmasındaki uyumluluk performansını değerlendirmek için ivme cevaplarının ortalama karekök (RMS) değerleri hesaplanmıştır. Sonuçların birbirleriyle farklı durumlar için başarılı bir şekilde eşleştiği gözlemlenmiştir. Manipülatörlerin SimMechanics tabanlı dinamik modelleme yönteminin güvenirliği, deneysel sonuçlarla ele alınmıştır.
Thanks
Deneysel çalışmalarındaki katkılarından dolayı Dokuz Eylül Üniversitesine özel teşekkürlerimi sunarım.
References
- Abou Elyazed, M. M., Mabrouk, M. H., Elnor, M. A., & Mahgoub, H. M. (2016). Trajectory Planning of Five Dof Manipulator: Dynamic Feed Forward Controller Over Computed Torque Controller. International Journal of Engineering Research & Technology, 17(17th International Conference on Applied Mechanics and Mechanical Engineering, pp. 1–14), Military Technical College. https://doi.org/10.21608/amme.2016.35381
- Ansari-Rad, S., Kalhor, A., & Araabi, B. N. (2019). Partial identification and control of MIMO systems via switching linear reduced-order models under weak stimulations. Evolving Systems, 10(2), 111–128. https://doi.org/10.1007/s12530-017-9214-8
- Azmoun, M., Rouhollahi, A., Masouleh, M. T., & Kalhor, A. (2019). Kinematics and Control of a 4-DOF Delta Parallel Manipulator. Proceedings of the 6th RSI International Conference on Robotics and Mechatronics, IcRoM 2018, IcRoM, 494–500. https://doi.org/10.1109/ICRoM.2018.8657618
- Boukattaya, M., Damak, T., & Jallouli, M. (2011). Robust adaptive control for mobile manipulators. International Journal of Automation and Computing, 8(1), 8–13. https://doi.org/10.1007/s11633-010-0548-y
- Esmaeili, M., & Saadat, M. (2020). Path Planning and Control of an Industrial Robot Used for Opening Tap Hole of an Electric Arc Furnace. Journal of Modern Processes in Manufacturing and Production, 9(4), 5–14.
- Gaber, A. N. A., Rezeka, S. F., & El Gamal, H. A. (2016). Design and Position Control of Arm Manipulator ; Experimentally and in MATLAB SimMechanics. International Journal of Engineering Research & Technology (IJERT), 5(08), 352–359.
- Hirukawa, T., Komada, S., & Hirai, J. (2007). Image feature based navigation of nonholonomic mobile robots with active camera. Proceedings of the SICE Annual Conference, 2502–2506. https://doi.org/10.1109/SICE.2007.4421411
- Lavretsky, E., & Wise, K. A. (2013). Robust adaptive control. In Advanced Textbooks in Control and Signal Processing (pp. 317–353). Springer, London. https://doi.org/10.1007/978-1-4471-4396-3_11
- Mailah, M., Pitowarno, E., & Jamaluddin, H. (2005). Robust motion control for mobile manipulator using resolved acceleration and proportional-integral active force control. International Journal of Advanced Robotic Systems, 2(2), 14. https://doi.org/10.5772/5794
- Malayjerdi, M., & Akbarzadeh, A. (2019). Analytical modeling of a 3-D snake robot based on sidewinding locomotion. International Journal of Dynamics and Control, 7(1), 83–93. https://doi.org/10.1007/s40435-018-0441-z
- Malgaca, L., & Uyar, M. (2019). Hybrid vibration control of a flexible composite box cross-sectional manipulator with piezoelectric actuators. Composites Part B: Engineering, 176, 107278. https://doi.org/10.1016/j.compositesb.2019.107278
- Malgaca, L., Uyar, M., & Yavuz, S. (2017). Active Vibration Suppression of a Single-link Smart Flexible Manipulator. International Journal of Natural and Engineering Sciences (IJNES), 11(1), 13–19.
- Mariappan, S. M., & Veerabathiran, A. (2016). Modelling and simulation of multi spindle drilling redundant SCARA robot using SolidWorks and MATLAB/SimMechanics. Revista Facultad de Ingenieria, 81, 63–72. https://doi.org/10.17533/udea.redin.n81a06
- Rao, S. S. (2014). Mechanical Vibrations. In Design Engineer’s Reference Guide (pp. 109–164). CRC press. https://doi.org/10.1201/b16660-10
- Stevanović, I., & Rašuo, B. (2017). Development of a miniature robot based on experience inspired by nature. FME Transactions, 45(1), 189–197. https://doi.org/10.5937/fmet1701189S
- Tlale, N. S., & Zhang, P. (2005). Teaching the design of parallel manipulators and their controllers implementing MATLAB, simulink, simMechanics and CAD. International Journal of Engineering Education, 21(5), 838–845.
- Tsay, T. J., Lai, Y. F., & Hsiao, Y. L. (2010). Material handling of a mobile manipulator using an eye-in-hand vision system. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2010 - Conference Proceedings, 4743–4748. https://doi.org/10.1109/IROS.2010.5649578
- Umar, S. N. H., & Bakar, E. A. (2014). Study on trajectory motion and computational analysis of robot manipulator. Jurnal Teknologi (Sciences and Engineering), 67(1). https://doi.org/10.11113/jt.v67.2206
- Uyar, M. (2021). Modeling and Vibration Suppression of a Flexible Structure in SimMechanics. European Journal of Science and Technology, 28, 766–770. https://doi.org/10.31590/ejosat.1011316
- Wang, W., Yang, P.-H., Wang, S.-P., & Xu, L. (2017). The 3D Arm Modeling and Position Control. 2017 International Conference on Manufacturing Engineering and Intelligent Materials (ICMEIM 2017), 362–369. https://doi.org/10.2991/icmeim-17.2017.61
- West, C., Montazeri, A., Monk, S. D., & Taylor, C. J. (2016). A genetic algorithm approach for parameter optimization of a 7DOF robotic manipulator. IFAC-PapersOnLine, 49(12), 1261–1266. https://doi.org/10.1016/j.ifacol.2016.07.688
- Win, T. M., Hisketch, T., & Eaton, R. (2013). Simmechanics Visualization of Experimental Model Overhead Crane, Its Linearization And Rerence Tracking-Lqr Control. International Journal of Chaos, Control, Modelling and Simulation, 2(3), 1–16. https://doi.org/10.5121/ijccms.2013.2301
Study on dynamic modelling and vibration analysis of single-link flexible manipulator
Year 2023,
Volume: 13 Issue: 1, 47 - 56, 15.01.2023
Mehmet Uyar
Abstract
In this study, SimMechanics-based dynamic modeling and vibration analysis of a single-link flexible manipulator are studied. A flexible beam model is set up for modeling the manipulator. Transient analysis is performed to obtain the endpoint acceleration vibration responses of the manipulator moved with different motion profiles. Both the experimental and simulation acceleration results are presented for different cases. The root means square (RMS) values of the acceleration responses are calculated to evaluate the compatibility performance in verifying the simulation results with the experimental results. It has been observed that the results match each other successfully for different cases. The reliability of the SimMechanics-based dynamic modeling method of manipulators is discussed with the experimental results.
References
- Abou Elyazed, M. M., Mabrouk, M. H., Elnor, M. A., & Mahgoub, H. M. (2016). Trajectory Planning of Five Dof Manipulator: Dynamic Feed Forward Controller Over Computed Torque Controller. International Journal of Engineering Research & Technology, 17(17th International Conference on Applied Mechanics and Mechanical Engineering, pp. 1–14), Military Technical College. https://doi.org/10.21608/amme.2016.35381
- Ansari-Rad, S., Kalhor, A., & Araabi, B. N. (2019). Partial identification and control of MIMO systems via switching linear reduced-order models under weak stimulations. Evolving Systems, 10(2), 111–128. https://doi.org/10.1007/s12530-017-9214-8
- Azmoun, M., Rouhollahi, A., Masouleh, M. T., & Kalhor, A. (2019). Kinematics and Control of a 4-DOF Delta Parallel Manipulator. Proceedings of the 6th RSI International Conference on Robotics and Mechatronics, IcRoM 2018, IcRoM, 494–500. https://doi.org/10.1109/ICRoM.2018.8657618
- Boukattaya, M., Damak, T., & Jallouli, M. (2011). Robust adaptive control for mobile manipulators. International Journal of Automation and Computing, 8(1), 8–13. https://doi.org/10.1007/s11633-010-0548-y
- Esmaeili, M., & Saadat, M. (2020). Path Planning and Control of an Industrial Robot Used for Opening Tap Hole of an Electric Arc Furnace. Journal of Modern Processes in Manufacturing and Production, 9(4), 5–14.
- Gaber, A. N. A., Rezeka, S. F., & El Gamal, H. A. (2016). Design and Position Control of Arm Manipulator ; Experimentally and in MATLAB SimMechanics. International Journal of Engineering Research & Technology (IJERT), 5(08), 352–359.
- Hirukawa, T., Komada, S., & Hirai, J. (2007). Image feature based navigation of nonholonomic mobile robots with active camera. Proceedings of the SICE Annual Conference, 2502–2506. https://doi.org/10.1109/SICE.2007.4421411
- Lavretsky, E., & Wise, K. A. (2013). Robust adaptive control. In Advanced Textbooks in Control and Signal Processing (pp. 317–353). Springer, London. https://doi.org/10.1007/978-1-4471-4396-3_11
- Mailah, M., Pitowarno, E., & Jamaluddin, H. (2005). Robust motion control for mobile manipulator using resolved acceleration and proportional-integral active force control. International Journal of Advanced Robotic Systems, 2(2), 14. https://doi.org/10.5772/5794
- Malayjerdi, M., & Akbarzadeh, A. (2019). Analytical modeling of a 3-D snake robot based on sidewinding locomotion. International Journal of Dynamics and Control, 7(1), 83–93. https://doi.org/10.1007/s40435-018-0441-z
- Malgaca, L., & Uyar, M. (2019). Hybrid vibration control of a flexible composite box cross-sectional manipulator with piezoelectric actuators. Composites Part B: Engineering, 176, 107278. https://doi.org/10.1016/j.compositesb.2019.107278
- Malgaca, L., Uyar, M., & Yavuz, S. (2017). Active Vibration Suppression of a Single-link Smart Flexible Manipulator. International Journal of Natural and Engineering Sciences (IJNES), 11(1), 13–19.
- Mariappan, S. M., & Veerabathiran, A. (2016). Modelling and simulation of multi spindle drilling redundant SCARA robot using SolidWorks and MATLAB/SimMechanics. Revista Facultad de Ingenieria, 81, 63–72. https://doi.org/10.17533/udea.redin.n81a06
- Rao, S. S. (2014). Mechanical Vibrations. In Design Engineer’s Reference Guide (pp. 109–164). CRC press. https://doi.org/10.1201/b16660-10
- Stevanović, I., & Rašuo, B. (2017). Development of a miniature robot based on experience inspired by nature. FME Transactions, 45(1), 189–197. https://doi.org/10.5937/fmet1701189S
- Tlale, N. S., & Zhang, P. (2005). Teaching the design of parallel manipulators and their controllers implementing MATLAB, simulink, simMechanics and CAD. International Journal of Engineering Education, 21(5), 838–845.
- Tsay, T. J., Lai, Y. F., & Hsiao, Y. L. (2010). Material handling of a mobile manipulator using an eye-in-hand vision system. 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2010 - Conference Proceedings, 4743–4748. https://doi.org/10.1109/IROS.2010.5649578
- Umar, S. N. H., & Bakar, E. A. (2014). Study on trajectory motion and computational analysis of robot manipulator. Jurnal Teknologi (Sciences and Engineering), 67(1). https://doi.org/10.11113/jt.v67.2206
- Uyar, M. (2021). Modeling and Vibration Suppression of a Flexible Structure in SimMechanics. European Journal of Science and Technology, 28, 766–770. https://doi.org/10.31590/ejosat.1011316
- Wang, W., Yang, P.-H., Wang, S.-P., & Xu, L. (2017). The 3D Arm Modeling and Position Control. 2017 International Conference on Manufacturing Engineering and Intelligent Materials (ICMEIM 2017), 362–369. https://doi.org/10.2991/icmeim-17.2017.61
- West, C., Montazeri, A., Monk, S. D., & Taylor, C. J. (2016). A genetic algorithm approach for parameter optimization of a 7DOF robotic manipulator. IFAC-PapersOnLine, 49(12), 1261–1266. https://doi.org/10.1016/j.ifacol.2016.07.688
- Win, T. M., Hisketch, T., & Eaton, R. (2013). Simmechanics Visualization of Experimental Model Overhead Crane, Its Linearization And Rerence Tracking-Lqr Control. International Journal of Chaos, Control, Modelling and Simulation, 2(3), 1–16. https://doi.org/10.5121/ijccms.2013.2301