Research Article
BibTex RIS Cite

Doğal taş artıkları kullanılarak üretilen yapay mermerlerin farklı çevresel koşullara karşı duraylılıklarının araştırılması

Year 2023, Volume: 13 Issue: 2, 299 - 313, 15.04.2023
https://doi.org/10.17714/gumusfenbil.1183102

Abstract

Yapı sektöründe yaygın biçimde kullanılan doğal taş ve mermerlerin ocakta üretimi ve fabrikalarda nihai ürün haline getirilmeleri sırasında azımsanmayacak oranda artık malzeme meydana gelmektedir. Bu artık malzemelerin değerlendirme olanaklarının araştırılması, çevre kirliliğin azaltılması, ülke ekonomisine katkı sağlanması ve mermer yataklarının rezervlerinin korunması açısından önem arz etmektedir. Yapay mermer üretiminde söz konusu bu doğal taş ve mermer artıklarının kullanılabilme olanaklarının araştırılması bu çalışmanın konusunu oluşturmaktadır. Bu kapsamda, Eskişehir bölgesinden temin edilen granit artıkları ile Malatya bölgesinden temin edilen mermer artıkları polyester reçine ile belirlenen oranlarda karıştırılmış, kalıplanarak yapay mermer numuneleri üretilmiştir. Elde edilen numunelerin fiziko-mekanik özellikleri TSE ve ISRM standartlarında tanımlanan yöntemlere göre belirlenmiştir. Bunlara ek olarak elde edilen numunelerin değişik çevresel koşullara karşı duraylılıklarını belirlemek amacıyla tuz kristallenmesi, termal şok ve donma çözünme döngüleri uygulanmıştır. Döngüler sonunda mermerlerde gelişen ağırlık kayıpları, yüzey renk özelliklerindeki değişimler belirlenmiştir. Elde edilen numunelerin fizikomekanik özelliklerinin mermer ve doğal taşlar için uygun sınırlarda olduğu görülmüştür. Uygulanan çevresel koşullardan termal şok uygulamalarının yapay mermer örnekleri üzerinde en çok tahribat yaratan uygulama olduğu belirlenmiştir.

Supporting Institution

İnönü Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi

Project Number

FYL-2021-2448

Thanks

Yazarlar bu çalışmayı FYL-2021-2448 nolu proje ile destekleyen İnönü Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi’ne teşekkür ederler.

References

  • Aliabdo, A.A., Elmoaty, M.A., & Auda, M. (2014). Re-use of waste marble dust in the production of cement and concrete. Construction and Building Materials, 50, 28-41. https://doi.org/10.1016/j.conbuildmat.2013.09.005
  • Barani, K., & Esmaili, H. (2016). Production of artificial stones labs using waste granite and marble stones sludge samples. Journal of Mining and Environment, 7(1), 135-141.
  • Başçetin, A., Adıguzel, D., Eker, H., Odabaş, E., &Tuylu, S. (2021). Efects of puzzolanic materials in surface paste disposal by pilot scale tests: observation of physical changes. International Journal of Environmental Science and Technology, 18, 949–964. https://doi.org/10.1007/s13762-020-02892-w
  • Chioidi, C.F., & Rodriquez, H.P. (2009). Guide application of stones in coverings. Sao Paulo Abirocha, 118, 37-41.
  • Debnath, S., Ranade, R., Wunder, S.L., Mccool, J., Boberick, K., & Baran, G. (2004). Interface effects on mechanical properties of particle- reinforced composites. Dental Materials, 20(7), 677-686. https://doi.org/10.1016/j.dental.2003.12.001
  • Deere, D.V., & Miller, R.P. (1966). Engineering classification and ındex properties of ıntact rock. University of Illinois. 90-101. https://apps.dtic.mil/sti/pdfs/AD0646610.pdf
  • Dehghan, S., Sattarı, G., Chehreh, Chelgani, S., & Alliabadi, M.A. (2009). Prediction of uniaxial compressive strength and modulus of elasticity for travertine samples using regression and artificial neural networks. Mining Science and Technology, 20, 41–46. https://doi.org/10.1016/S1674-5264(09)60158-7
  • Efran, N.A. (2021). Recycling of marble calcite waste into useful artificial marble. Journal of Advanced Engineering Trends, 40, 7-12. https://doi.org/10.21608/jaet.2021.82182
  • Felekoğlu, B., &, Türkel, S. (2004). Yükleme hızının beton basınç dayanıma ve elastisite modülene etkisi. DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 6(1), 65-75.
  • Gomes, M.L.P.M., Carvalho, E.A.S., Demartin, T.J.C., Carvalho, E.A., Colorado, H.A., & Vieira, C.M.F. (2021). Mechanical and physical investigation of an artificial stone produced with granite residue and epoxy resin. Journal of Composite Materials, 55(9), 1247-1253. https://doi.org/10.1177/0021998320968137
  • ISRM. (1978). Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. International Journal of Rock Mechanics and Mining Science and Geomechanical Abstract, 16, 135-140. https://doi.org/10.1016/0148-9062(79)91451-7
  • ISRM. (1978). Suggested methods for determining sound velocity. International Journal of Rock Mechanic and Mining Science and Geomechanic Abstract, 15, 53- 58.
  • Köse, H. (2009). Kaya mekaniği, (4. Baskı). Dokuz Eylül Üniversitesi Yayınları.
  • Medina, G., Saez del Bosque, I.F., Frias, M., Sanchez de Rojas, M.I., & Medina, C. (2017). Granite quarry waste as a future eco-efficient supplementary cementitious material (SCM): scientific and technical considerations. Journal of Cleaner Production, 148, 467e476. https://doi.org/10.1016/j.jclepro.2017.02.048
  • Menezes, R.R., Ferreria, H.S., Neves, G.A., & Ferreria, H.C. (2005). Use of granite sawing waste in the production of ceramic bricks and tiles. Journal of European Ceramic Society, 25(7), 1149-1158. https://doi.org/10.1016/j.jeurceramsoc.2004.04.020
  • Miller, J.D., Ishida, H., & Maurer, F.H.J. (1998). Dynamic-mechanical properties of interfacially midified glass sphere polyethyylene. Rheolgica Acta, 27, 397-404. https://doi.org/10.1007/BF01332160
  • Özgüven, A., & Özçelik, Y. (2013). İnvestigation of some property changes of natural building stones exposed o fire and heat. Construction and Building Materials, 38, 813-821. https://doi.org/10.1016/j.conbuildmat.2012.09.072
  • Pires, V., Rosa, L.G., & Dionisio, A. (2014). Implications of exposure to high temperatures for stone cladding requirements of three Portuguese granites regarding the use of dowel-hole anchoring systems. Construction and Building Materials, 64, 440-450. https://doi.org/10.1016/j.conbuildmat.2014.03.035
  • Sabatakasis, N., Koukis, G., Tsiambaos, G., &. Papanakli, G. S. (2008). Index properties and strength variation controlled by microstructure for sedimentary rocks. Engineering Geology, 97, 80-90. https://doi.org/10.1016/j.enggeo.2007.12.004
  • Sharma-Kumar, N., Kumar, P., Kumar, S., Skariah Thomas, B., & Chandra Gupta, R. (2017). Properties of concrete polished granite waste as partial substitution of coarse aggregate. Construction and Building Materials, 151, 158-163. https://doi.org/10.1016/ j.conbuildmat.2017.06.081
  • Sharma, P.K. & Singh, T.N. (2008). A correlation between p-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bulletin of Engineering Geology and the Environment, 67, 17–22. https://doi.org/ 10.1007/s10064-007-0109-y
  • Shishegaran, A., Mohsen, S., Sajjad M., & Korayem A.H. (2021). The mechanical strength of the artificial stones, containing the travertine wastes and sand. Journal of Materials Research and Technology, 11, 1688-1709, https://doi.org/10.1016/j.jmrt.2021.02.013
  • Samad, H., A. & Rashid, R.A. (2020). Influence of dolomite and granite waste content on the properties of artificial marble, mineral research centre, department of mineral and geoscience. Materials Science and Engineering, 713(1) 1-9. https://doi.org/10.1088/1757-899X/713/1/012017
  • Şahin Demir, D., Çullu, M., & Eker, H. (2019). Betonların aşındırma ve karbonatlaşma performanslarına kireçsi uçucu küllerin Farklı incelik ve ikame oranlarının etkisi. Avrupa Bilim ve Teknoloji Dergisi, 17, 1150-1163. https://doi.org/10.31590/ejosat.654733
  • Şahin Demir, D., Eker, H., & Çullu, M. (2022). Uçucu kül inceliğinin betonun sülfat direnci üzerine etkisi. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 17, 287-303. https://doi.org/10.54365/adyumbd.1053376
  • Tahran, F. (1989). Mühendislik Jeolojisi Prensipleri. (145). KTÜ yayınları.
  • TS 699. (2009). Tabii yapı taşları- muayene ve deney metodları. TSE, Ankara.
  • TS EN 1939. (2010). Doğal taşlar- deney metotları- gerçek yoğunluk, görünür yoğunluk, toplam ve açık gözeneklilik tayini, TSE, Ankara.
  • TS EN 14066. (2004). Doğal taşlar-deney metodları termal şok etkisiyle yıpranmaya direncin tayini, TSE, Ankara.
  • TS EN 12370. (2001). Doğal Taşlar Deney Metotları - Tuz Kristallenmesine Direncin Tayini. TSE, Ankara.
  • Uysal, M. (2018). The use of waste maroon marble powder and ıron oxide pigment in the production of coloured self-compacting concrete. Advance Civil Engineering, 1-10. https://doi.org/10.1155/2018/8093576
  • Yavuz, H., Demirdağ, S., & Caran, S. (2010). Thermal effect on physical properties of carbonate rock. International Journal of Rock Mechanics and Mining Science, 47, 94-103. https://doi.org/10.1016/j.ijrmms.2009.09.014
  • Yücetürk, G. (2010). Göller bölgesindeki kayaçların mineralojik petrografik özelliklerinin yapay mermer kalitesine etkileri [Doktora tezi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü]

Investigation of the durability of artificial marble produced using Natural Stone residues against different environmental conditions

Year 2023, Volume: 13 Issue: 2, 299 - 313, 15.04.2023
https://doi.org/10.17714/gumusfenbil.1183102

Abstract

A large amount of waste materials occurs during the production and processing of natural stones and marbles, which are widely used in the construction industry. It is important to investigate the possibilities of using these waste materials, to reduce environmental pollution, to contribute to the country’s economy, to protect the reserves of marble deposits. Investigation of the possibilities of using these natural stones and marble residues in the production of artificial marble is the subject of this manuscript. Artificial marble samples were produced by mixing granite residues from Eskisehir region and marble residues from Malatya region with polyester resin and moulding. The physical-mechanical properties of samples were determined according to TSE and ISRM methods. Additionally salt crystallization, thermal shock, freeze-thaw cycles were applied to determine the stability of the samples in different environmental conditions. At the end of the cycles, weight loss, surface colour changes were determined. It was determined that the physicomechanical properties of the samples were appropriate in accordance with natural stone standards and thermal shock cycles were the most destructive environmental conditions on artificial marble samples.

Project Number

FYL-2021-2448

References

  • Aliabdo, A.A., Elmoaty, M.A., & Auda, M. (2014). Re-use of waste marble dust in the production of cement and concrete. Construction and Building Materials, 50, 28-41. https://doi.org/10.1016/j.conbuildmat.2013.09.005
  • Barani, K., & Esmaili, H. (2016). Production of artificial stones labs using waste granite and marble stones sludge samples. Journal of Mining and Environment, 7(1), 135-141.
  • Başçetin, A., Adıguzel, D., Eker, H., Odabaş, E., &Tuylu, S. (2021). Efects of puzzolanic materials in surface paste disposal by pilot scale tests: observation of physical changes. International Journal of Environmental Science and Technology, 18, 949–964. https://doi.org/10.1007/s13762-020-02892-w
  • Chioidi, C.F., & Rodriquez, H.P. (2009). Guide application of stones in coverings. Sao Paulo Abirocha, 118, 37-41.
  • Debnath, S., Ranade, R., Wunder, S.L., Mccool, J., Boberick, K., & Baran, G. (2004). Interface effects on mechanical properties of particle- reinforced composites. Dental Materials, 20(7), 677-686. https://doi.org/10.1016/j.dental.2003.12.001
  • Deere, D.V., & Miller, R.P. (1966). Engineering classification and ındex properties of ıntact rock. University of Illinois. 90-101. https://apps.dtic.mil/sti/pdfs/AD0646610.pdf
  • Dehghan, S., Sattarı, G., Chehreh, Chelgani, S., & Alliabadi, M.A. (2009). Prediction of uniaxial compressive strength and modulus of elasticity for travertine samples using regression and artificial neural networks. Mining Science and Technology, 20, 41–46. https://doi.org/10.1016/S1674-5264(09)60158-7
  • Efran, N.A. (2021). Recycling of marble calcite waste into useful artificial marble. Journal of Advanced Engineering Trends, 40, 7-12. https://doi.org/10.21608/jaet.2021.82182
  • Felekoğlu, B., &, Türkel, S. (2004). Yükleme hızının beton basınç dayanıma ve elastisite modülene etkisi. DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, 6(1), 65-75.
  • Gomes, M.L.P.M., Carvalho, E.A.S., Demartin, T.J.C., Carvalho, E.A., Colorado, H.A., & Vieira, C.M.F. (2021). Mechanical and physical investigation of an artificial stone produced with granite residue and epoxy resin. Journal of Composite Materials, 55(9), 1247-1253. https://doi.org/10.1177/0021998320968137
  • ISRM. (1978). Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. International Journal of Rock Mechanics and Mining Science and Geomechanical Abstract, 16, 135-140. https://doi.org/10.1016/0148-9062(79)91451-7
  • ISRM. (1978). Suggested methods for determining sound velocity. International Journal of Rock Mechanic and Mining Science and Geomechanic Abstract, 15, 53- 58.
  • Köse, H. (2009). Kaya mekaniği, (4. Baskı). Dokuz Eylül Üniversitesi Yayınları.
  • Medina, G., Saez del Bosque, I.F., Frias, M., Sanchez de Rojas, M.I., & Medina, C. (2017). Granite quarry waste as a future eco-efficient supplementary cementitious material (SCM): scientific and technical considerations. Journal of Cleaner Production, 148, 467e476. https://doi.org/10.1016/j.jclepro.2017.02.048
  • Menezes, R.R., Ferreria, H.S., Neves, G.A., & Ferreria, H.C. (2005). Use of granite sawing waste in the production of ceramic bricks and tiles. Journal of European Ceramic Society, 25(7), 1149-1158. https://doi.org/10.1016/j.jeurceramsoc.2004.04.020
  • Miller, J.D., Ishida, H., & Maurer, F.H.J. (1998). Dynamic-mechanical properties of interfacially midified glass sphere polyethyylene. Rheolgica Acta, 27, 397-404. https://doi.org/10.1007/BF01332160
  • Özgüven, A., & Özçelik, Y. (2013). İnvestigation of some property changes of natural building stones exposed o fire and heat. Construction and Building Materials, 38, 813-821. https://doi.org/10.1016/j.conbuildmat.2012.09.072
  • Pires, V., Rosa, L.G., & Dionisio, A. (2014). Implications of exposure to high temperatures for stone cladding requirements of three Portuguese granites regarding the use of dowel-hole anchoring systems. Construction and Building Materials, 64, 440-450. https://doi.org/10.1016/j.conbuildmat.2014.03.035
  • Sabatakasis, N., Koukis, G., Tsiambaos, G., &. Papanakli, G. S. (2008). Index properties and strength variation controlled by microstructure for sedimentary rocks. Engineering Geology, 97, 80-90. https://doi.org/10.1016/j.enggeo.2007.12.004
  • Sharma-Kumar, N., Kumar, P., Kumar, S., Skariah Thomas, B., & Chandra Gupta, R. (2017). Properties of concrete polished granite waste as partial substitution of coarse aggregate. Construction and Building Materials, 151, 158-163. https://doi.org/10.1016/ j.conbuildmat.2017.06.081
  • Sharma, P.K. & Singh, T.N. (2008). A correlation between p-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bulletin of Engineering Geology and the Environment, 67, 17–22. https://doi.org/ 10.1007/s10064-007-0109-y
  • Shishegaran, A., Mohsen, S., Sajjad M., & Korayem A.H. (2021). The mechanical strength of the artificial stones, containing the travertine wastes and sand. Journal of Materials Research and Technology, 11, 1688-1709, https://doi.org/10.1016/j.jmrt.2021.02.013
  • Samad, H., A. & Rashid, R.A. (2020). Influence of dolomite and granite waste content on the properties of artificial marble, mineral research centre, department of mineral and geoscience. Materials Science and Engineering, 713(1) 1-9. https://doi.org/10.1088/1757-899X/713/1/012017
  • Şahin Demir, D., Çullu, M., & Eker, H. (2019). Betonların aşındırma ve karbonatlaşma performanslarına kireçsi uçucu küllerin Farklı incelik ve ikame oranlarının etkisi. Avrupa Bilim ve Teknoloji Dergisi, 17, 1150-1163. https://doi.org/10.31590/ejosat.654733
  • Şahin Demir, D., Eker, H., & Çullu, M. (2022). Uçucu kül inceliğinin betonun sülfat direnci üzerine etkisi. Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi, 17, 287-303. https://doi.org/10.54365/adyumbd.1053376
  • Tahran, F. (1989). Mühendislik Jeolojisi Prensipleri. (145). KTÜ yayınları.
  • TS 699. (2009). Tabii yapı taşları- muayene ve deney metodları. TSE, Ankara.
  • TS EN 1939. (2010). Doğal taşlar- deney metotları- gerçek yoğunluk, görünür yoğunluk, toplam ve açık gözeneklilik tayini, TSE, Ankara.
  • TS EN 14066. (2004). Doğal taşlar-deney metodları termal şok etkisiyle yıpranmaya direncin tayini, TSE, Ankara.
  • TS EN 12370. (2001). Doğal Taşlar Deney Metotları - Tuz Kristallenmesine Direncin Tayini. TSE, Ankara.
  • Uysal, M. (2018). The use of waste maroon marble powder and ıron oxide pigment in the production of coloured self-compacting concrete. Advance Civil Engineering, 1-10. https://doi.org/10.1155/2018/8093576
  • Yavuz, H., Demirdağ, S., & Caran, S. (2010). Thermal effect on physical properties of carbonate rock. International Journal of Rock Mechanics and Mining Science, 47, 94-103. https://doi.org/10.1016/j.ijrmms.2009.09.014
  • Yücetürk, G. (2010). Göller bölgesindeki kayaçların mineralojik petrografik özelliklerinin yapay mermer kalitesine etkileri [Doktora tezi, Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü]
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Didem Eren Sarıcı 0000-0003-2639-5226

Gizem Aslantepe This is me 0000-0002-2770-9840

Project Number FYL-2021-2448
Publication Date April 15, 2023
Submission Date October 1, 2022
Acceptance Date January 30, 2023
Published in Issue Year 2023 Volume: 13 Issue: 2

Cite

APA Eren Sarıcı, D., & Aslantepe, G. (2023). Doğal taş artıkları kullanılarak üretilen yapay mermerlerin farklı çevresel koşullara karşı duraylılıklarının araştırılması. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(2), 299-313. https://doi.org/10.17714/gumusfenbil.1183102