Research Article
BibTex RIS Cite

Grafen katkılı polilaktik asit membranıyla vakum membran distilasyon ile bor giderimi

Year 2023, Volume: 13 Issue: 2, 482 - 490, 15.04.2023
https://doi.org/10.17714/gumusfenbil.1197586

Abstract

Desalinasyon ve bor giderimi için membran teknolojilerine son yıllarda ilgi duyulmaktadır. Günümüzde membran bazlı ayırma prosesleri, çevre dostu olmaları ve enerji/maliyet tüketimindeki verimlilikleri nedeniyle tercih edilmektedirler. Bu yeni teknolojilerden biri de membran distilasyondur. Henüz akademik seviyede olan araştırmalar sonucunda membran distilasyon gibi ileri teknoloji ile %99,99 üzeri saflaştırma ve giderim yapmak mümkündür. Bu çalışmada, biyobozunur polimerlerden olan saf ve grafen katkılı polilaktik asit (PLA) membranlar üretilerek membran distilasyon tekniği ile sulardan bor giderimi yapılmıştır. Sıcaklığın, bor konsantrasyonunun, grafen oranının bor reddi ve su akısı değerlerine etkisi belirlenmiştir. Sonuç olarak tüm sıcaklıklarda ve tüm grafen katkılı PLA membranlarla %99 üzeri bor retleri elde edilmiştir. Özellikle grafen katkısıyla akı değerleri 13 kg/m2.h olarak elde edilmiştir.

Supporting Institution

Bu çalışma, Çanakkale Onsekiz Mart Üniversitesi Bilimsel Araştırma Projeleri Birimi

Project Number

FHD-2022-3900

Thanks

Bu çalışma, Çanakkale Onsekiz Mart Üniversitesi Bilimsel Araştırma Projeleri birimi tarafından FHD-2022-3900 numaralı projeler ile maddi olarak desteklenmiştir. Makalenin inceleme ve değerlendirme aşamasında yapmış oldukları katkılardan dolayı editör ve hakemlere teşekkür ederim

References

  • Abu-Zeid, M. A. E. R., Zhang, Y., Dong, H., Zhang, L., Chen, H. L., & Hou, L. (2015). A comprehensive review of vacuum membrane distillation technique. Desalination, 356, 1-14. https://doi.org/10.1016/j.desal.2014.10.033.
  • Adnan, S., Hoang, M., Wang, H., & Xie, Z. (2012). Commercial PTFE membranes for membrane distillation application: Effect of microstructure and support material. Desalination, 284, 297-308. https://doi.org/10.1016/j.desal.2011.09.015.
  • Alkhudhiri, A., Bin Darwish, N., Hakami, M. W., Abdullah, A., Alsadun, A., & Abu Homod, H. (2020). Boron removal by membrane distillation: A comparison study. Membranes, 10(10), 263. https://doi.org/10.3390/membranes10100263.
  • Aslan M. (2016). Membran teknolojileri (1.Baskı), Türkiye Çevre Koruma Vakfı.
  • Basile, A., Figoli, A., & Khayet, M. (2015). Pervaporation, vapour permeation and membrane distillation: principles and applications (1. Ed.), Elsevier.
  • Başkan, M. B., & Atalay, N. (2014). İçme ve sulama sularında bor kirliliği ve bor giderme yöntemleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 20(3), 78-84. https://doi.org/10.5505/pajes.2014.47955.
  • Eryildiz, B., Ozbey-Unal, B., Gezmis-Yavuz, E., Koseoglu-Imer, D. Y., Keskinler, B., & Koyuncu, I. (2021). Flux-enhanced reduced graphene oxide (rGO)/PVDF nanofibrous membrane distillation membranes for the removal of boron from geothermal water. Separation and Purification Technology, 274, 119058. https://doi.org/10.1016/j.seppur.2021.119058.
  • Feng, H., Li, H., Li, M., & Zhang, X. (2022). Construction of omniphobic PVDF membranes for membrane distillation: Investigating the role of dimension, morphology, and coating technology of silica nanoparticles. Desalination, 525, 115498. https://doi.org/10.1016/j.desal.2021.115498.
  • Grasso, G., Galiano, F., Yoo, M. J., Mancuso, R., Park, H. B., Gabriele, B., Figoli, A. & Drioli, E. (2020). Development of graphene-PVDF composite membranes for membrane distillation. Journal of Membrane Science, 604, 118017. https://doi.org/10.1016/j.memsci.2020.118017.
  • Hou, D., Dai, G., Wang, J., Fan, H., Luan, Z., & Fu, C. (2013). Boron removal and desalination from seawater by PVDF flat-sheet membrane through direct contact membrane distillation. Desalination, 326, 115-124. https://doi.org/10.1016/j.desal.2013.07.023.
  • Khayet, M. (2011). Membranes and theoretical modeling of membrane distillation: a review. Advances in Colloid and Interface Science, 164(1-2), 56-88. https://doi.org/10.1016/j.cis.2010.09.005.
  • Leaper, S., Abdel-Karim, A., Faki, B., Luque-Alled, J. M., Alberto, M., Vijayaraghavan, A., Holmes, S.M., Szekely, G., Badawy, M.I., Shokri, N., & Gorgojo, P. (2018). Flux-enhanced PVDF mixed matrix membranes incorporating APTS-functionalized graphene oxide for membrane distillation. Journal of Membrane Science, 554, 309-323. https://doi.org/10.1016/j.memsci.2018.03.013. Liang, B., Zhan, W., Qi, G., Lin, S., Nan, Q., Liu, Y., Cao, B., & Pan, K. (2015). High performance graphene oxide/polyacrylonitrile composite pervaporation membranes for desalination applications. Journal of Materials Chemistry A, 3(9), 5140-5147. https://doi.org/10.1039/C4TA06573E.
  • Ozbey-Unal, B., Gezmis-Yavuz, E., Eryildiz, B., Koseoglu-Imer, D. Y., Keskinler, B., & Koyuncu, I. (2020). Boron removal from geothermal water by nanofiber-based membrane distillation membranes with significantly improved surface hydrophobicity. Journal of Environmental Chemical Engineering, 8(5), 104113. https://doi.org/10.1016/j.jece.2020.104113.
  • Ozbey-Unal, B., Imer, D. Y., Keskinler, B., & Koyuncu, I. (2018). Boron removal from geothermal water by air gap membrane distillation. Desalination, 433, 141-150. https://doi.org/10.1016/j.desal.2018.01.033.
  • Pan, J., Zhang, F., Wang, Z., Sun, S. P., Cui, Z., Jin, W., Bamaga, O., Abulkhair, H., Albeirutty, M., & Drioli, E. (2022). Enhanced anti-wetting and anti-fouling properties of composite PFPE/PVDF membrane in vacuum membrane distillation. Separation and Purification Technology, 282, 120084. https://doi.org/10.1016/j.seppur.2021.120084.
  • Seraj, S., Mohammadi, T., & Tofighy, M. A. (2022). Graphene-based membranes for membrane distillation applications: A review. Journal of Environmental Chemical Engineering, 10, 107974. https://doi.org/10.1016/j.jece.2022.107974.
  • Sun, N., Li, J., Ren, J., Xu, Z., Sun, H., Du, Z., Zhao, H., Ettelatie,R., & Cheng, F. (2022). Insights into the enhanced flux of graphene oxide composite membrane in direct contact membrane distillation: The different role at evaporation and condensation interfaces. Water Research, 212, 118091. https://doi.org/10.1016/j.watres.2022.118091.
  • Tang, Y. P., Luo, L., Thong, Z., & Chung, T. S. (2017). Recent advances in membrane materials and technologies for boron removal. Journal of Membrane Science, 541, 434-446. https://doi.org/10.1016/j.memsci.2017.07.015.
  • Ünügül, T., & Nigiz, F. U. (2022). Evaluation of halloysite nanotube–loaded chitosan-based nanocomposite membranes for water desalination by pervaporation. Water, Air, & Soil Pollution, 233(2), 34. https://doi.org/10.1007/s11270-022-05505-z.
  • Wang, Q., Li, N., Bolto, B., Hoang, M., & Xie, Z. (2016). Desalination by pervaporation: A review. Desalination, 387, 46-60. https://doi.org/10.1016/j.desal.2016.02.036.
  • Woo, Y. C., Tijing, L. D., Shim, W. G., Choi, J. S., Kim, S. H., He, T., Drioli, E., & Shon, H. K. (2016). Water desalination using graphene-enhanced electrospun nanofiber membrane via air gap membrane distillation. Journal of Membrane Science, 520, 99-110. https://doi.org/10.1016/j.memsci.2016.07.049.

Boron removal by vacuum membrane distillation with graphene doped polylactic acid membrane

Year 2023, Volume: 13 Issue: 2, 482 - 490, 15.04.2023
https://doi.org/10.17714/gumusfenbil.1197586

Abstract

Membrane technologies for desalination and boron removal have attracted interest in recent years. Today, membrane-based separation processes are preferred due to their environmental friendliness and efficiency in energy/cost consumption. One of these new technologies is membrane distillation. As a result of researches that are still at academic level, it is possible to purify and remove over 99.99% with advanced technology such as membrane distillation. In this study, pure and graphene-doped polylactic acid (PLA) membranes, which are biodegradable polymers, were produced and boron was removed from water by membrane distillation technique. The effects of temperature, boron concentration, graphene ratio on boron rejection and water flux values were determined. As a result, boron rejections above 99% were obtained at all temperatures and with all graphene-doped PLA membranes. The flux values were obtained as 13 kg/m2.h, especially with the graphene additive.

Project Number

FHD-2022-3900

References

  • Abu-Zeid, M. A. E. R., Zhang, Y., Dong, H., Zhang, L., Chen, H. L., & Hou, L. (2015). A comprehensive review of vacuum membrane distillation technique. Desalination, 356, 1-14. https://doi.org/10.1016/j.desal.2014.10.033.
  • Adnan, S., Hoang, M., Wang, H., & Xie, Z. (2012). Commercial PTFE membranes for membrane distillation application: Effect of microstructure and support material. Desalination, 284, 297-308. https://doi.org/10.1016/j.desal.2011.09.015.
  • Alkhudhiri, A., Bin Darwish, N., Hakami, M. W., Abdullah, A., Alsadun, A., & Abu Homod, H. (2020). Boron removal by membrane distillation: A comparison study. Membranes, 10(10), 263. https://doi.org/10.3390/membranes10100263.
  • Aslan M. (2016). Membran teknolojileri (1.Baskı), Türkiye Çevre Koruma Vakfı.
  • Basile, A., Figoli, A., & Khayet, M. (2015). Pervaporation, vapour permeation and membrane distillation: principles and applications (1. Ed.), Elsevier.
  • Başkan, M. B., & Atalay, N. (2014). İçme ve sulama sularında bor kirliliği ve bor giderme yöntemleri. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 20(3), 78-84. https://doi.org/10.5505/pajes.2014.47955.
  • Eryildiz, B., Ozbey-Unal, B., Gezmis-Yavuz, E., Koseoglu-Imer, D. Y., Keskinler, B., & Koyuncu, I. (2021). Flux-enhanced reduced graphene oxide (rGO)/PVDF nanofibrous membrane distillation membranes for the removal of boron from geothermal water. Separation and Purification Technology, 274, 119058. https://doi.org/10.1016/j.seppur.2021.119058.
  • Feng, H., Li, H., Li, M., & Zhang, X. (2022). Construction of omniphobic PVDF membranes for membrane distillation: Investigating the role of dimension, morphology, and coating technology of silica nanoparticles. Desalination, 525, 115498. https://doi.org/10.1016/j.desal.2021.115498.
  • Grasso, G., Galiano, F., Yoo, M. J., Mancuso, R., Park, H. B., Gabriele, B., Figoli, A. & Drioli, E. (2020). Development of graphene-PVDF composite membranes for membrane distillation. Journal of Membrane Science, 604, 118017. https://doi.org/10.1016/j.memsci.2020.118017.
  • Hou, D., Dai, G., Wang, J., Fan, H., Luan, Z., & Fu, C. (2013). Boron removal and desalination from seawater by PVDF flat-sheet membrane through direct contact membrane distillation. Desalination, 326, 115-124. https://doi.org/10.1016/j.desal.2013.07.023.
  • Khayet, M. (2011). Membranes and theoretical modeling of membrane distillation: a review. Advances in Colloid and Interface Science, 164(1-2), 56-88. https://doi.org/10.1016/j.cis.2010.09.005.
  • Leaper, S., Abdel-Karim, A., Faki, B., Luque-Alled, J. M., Alberto, M., Vijayaraghavan, A., Holmes, S.M., Szekely, G., Badawy, M.I., Shokri, N., & Gorgojo, P. (2018). Flux-enhanced PVDF mixed matrix membranes incorporating APTS-functionalized graphene oxide for membrane distillation. Journal of Membrane Science, 554, 309-323. https://doi.org/10.1016/j.memsci.2018.03.013. Liang, B., Zhan, W., Qi, G., Lin, S., Nan, Q., Liu, Y., Cao, B., & Pan, K. (2015). High performance graphene oxide/polyacrylonitrile composite pervaporation membranes for desalination applications. Journal of Materials Chemistry A, 3(9), 5140-5147. https://doi.org/10.1039/C4TA06573E.
  • Ozbey-Unal, B., Gezmis-Yavuz, E., Eryildiz, B., Koseoglu-Imer, D. Y., Keskinler, B., & Koyuncu, I. (2020). Boron removal from geothermal water by nanofiber-based membrane distillation membranes with significantly improved surface hydrophobicity. Journal of Environmental Chemical Engineering, 8(5), 104113. https://doi.org/10.1016/j.jece.2020.104113.
  • Ozbey-Unal, B., Imer, D. Y., Keskinler, B., & Koyuncu, I. (2018). Boron removal from geothermal water by air gap membrane distillation. Desalination, 433, 141-150. https://doi.org/10.1016/j.desal.2018.01.033.
  • Pan, J., Zhang, F., Wang, Z., Sun, S. P., Cui, Z., Jin, W., Bamaga, O., Abulkhair, H., Albeirutty, M., & Drioli, E. (2022). Enhanced anti-wetting and anti-fouling properties of composite PFPE/PVDF membrane in vacuum membrane distillation. Separation and Purification Technology, 282, 120084. https://doi.org/10.1016/j.seppur.2021.120084.
  • Seraj, S., Mohammadi, T., & Tofighy, M. A. (2022). Graphene-based membranes for membrane distillation applications: A review. Journal of Environmental Chemical Engineering, 10, 107974. https://doi.org/10.1016/j.jece.2022.107974.
  • Sun, N., Li, J., Ren, J., Xu, Z., Sun, H., Du, Z., Zhao, H., Ettelatie,R., & Cheng, F. (2022). Insights into the enhanced flux of graphene oxide composite membrane in direct contact membrane distillation: The different role at evaporation and condensation interfaces. Water Research, 212, 118091. https://doi.org/10.1016/j.watres.2022.118091.
  • Tang, Y. P., Luo, L., Thong, Z., & Chung, T. S. (2017). Recent advances in membrane materials and technologies for boron removal. Journal of Membrane Science, 541, 434-446. https://doi.org/10.1016/j.memsci.2017.07.015.
  • Ünügül, T., & Nigiz, F. U. (2022). Evaluation of halloysite nanotube–loaded chitosan-based nanocomposite membranes for water desalination by pervaporation. Water, Air, & Soil Pollution, 233(2), 34. https://doi.org/10.1007/s11270-022-05505-z.
  • Wang, Q., Li, N., Bolto, B., Hoang, M., & Xie, Z. (2016). Desalination by pervaporation: A review. Desalination, 387, 46-60. https://doi.org/10.1016/j.desal.2016.02.036.
  • Woo, Y. C., Tijing, L. D., Shim, W. G., Choi, J. S., Kim, S. H., He, T., Drioli, E., & Shon, H. K. (2016). Water desalination using graphene-enhanced electrospun nanofiber membrane via air gap membrane distillation. Journal of Membrane Science, 520, 99-110. https://doi.org/10.1016/j.memsci.2016.07.049.
There are 21 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Filiz Uğur Nigiz 0000-0003-0509-8425

Betül Karakoca 0000-0001-6435-1254

Project Number FHD-2022-3900
Publication Date April 15, 2023
Submission Date November 1, 2022
Acceptance Date March 28, 2023
Published in Issue Year 2023 Volume: 13 Issue: 2

Cite

APA Uğur Nigiz, F., & Karakoca, B. (2023). Grafen katkılı polilaktik asit membranıyla vakum membran distilasyon ile bor giderimi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(2), 482-490. https://doi.org/10.17714/gumusfenbil.1197586