Research Article
BibTex RIS Cite

Farklı doygunluk ve anizotropi koşullarında kumtaşlarının jeomekanik özelliklerindeki değişimlerin incelenmesi: Gümüşhane örneği (KD Türkiye)

Year 2023, Volume: 13 Issue: 3, 616 - 631, 15.07.2023
https://doi.org/10.17714/gumusfenbil.1274987

Abstract

Bu çalışmada Gümüşhane ili Mescitli yöresinde yüzeylenen kumtaşlarının değişik doygunluk ve anizotropi şartlarında jeomekanik özelliklerindeki değişimler araştırılmıştır. Bu amaçla laminalanma düzlemleri esas alınarak yükleme yönü ile 0, 30, 45, 60 ve 90° yapacak şekilde farklı anizotropi açılarında konumlanmış 225 adet numune hazırlanmıştır. Kumtaşı örneklerinin kuru birim hacim ağırlık (dry), doygun birim hacim ağırlık (sat), ağırlıkça su emme (Aw) ve hacimce su emme (Av) gibi indeks özellikleri tayin edilmiştir. Çalışma amacına uygun olarak kumtaşlarının değişen doygunluk ve anizotropi koşulları esas alınarak P dalga hızı gibi fiziksel özellikleri ile tek eksenli basınç ve dolaylı çekilme dayanımları belirlenmiştir. Yapılan değerlendirmeler sonucunda genel olarak laminalanmaya paralel örneklerin laminalanmaya dik olan örneklere göre daha yüksek dalga hızı değerine sahip oldukları gözlemlenmiştir. Kumtaşlarında tek eksenli basınç dayanımı değerleri laminalanmaya paralel ve dik olan örneklerde yüksek değerler gösterirken en düşük dayanım değeri 30o anizotropi açısına sahip örneklerden elde edilmiştir. Ayrıca artan doygunluk koşulları ile dayanım değerinin önemli miktarda azaldığı gözlemlenmiştir. Farklı doygunluk koşullarına bağlı olarak kumtaşlarının dayanım anizotropi oranı (RUCS) 1.28-1.49 arasında değişim sunmaktadır. Dolaylı çekilme dayanımı değerleri benzer şekilde laminalanmaya paralel ve dik örneklerde yüksek iken diğer anizotropi açılarında ise düşüktür. Dolaylı çekilme dayanımı değerleri de doygunluk derecesindeki artışa bağlı olarak azalım göstermektedir.

References

  • Ajalloeian, R., & Lahskaripour, G.R. (2000). Strength anizotropies in mudrocks. Bulletin of Engineering Geology and the Environment, 59(3), 195-199. https://doi.org/10.1007/s100640000055
  • Alkan, F., & Dağ, S, (2018). Investigation of the relations between geomechanical properties of some rocks of magmatic origins outcrop in Gümüşhane region. Uludağ University Journal of the Faculty of Engineering, 23(2), 203–216. (In Turkish). https://doi.org/ 10.17482/uumfd.409184
  • Amadei, B. (1996). Importance of anisotropy when estimating and measuring in situ stresses in rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 33(1), 293-325. https://doi.org/10.1006/0148-9062(95)00062-3
  • Batugin, S.A., & Nirenburg, R.K. (1972). Approximate relation between the elastic constants of anisotropic rocks and the anisotropy parameters. Soviet Mining Science, 8, 5-9.
  • Behrestaghi, M.H.N., Rao K.S., & Ramamurthy, T. (1996.) Engineering geological and geotechnical responses of schistose rocks from dam project areas in India. Engineering Geology, 44(1-4), 183-201. https://doi.org/10.1016/S0013-7952(96)00069-5
  • Buosi, C., Columbu, S., Ennas, G., Pittau, P., & Scanu, G.G. (2018). Mineralogical, petrographic, and physical investigations on fossiliferous middle Jurassic sandstones from central Sardinia (Italy) to define their alteration and experimental consolidation. Geoheritage, 11(3), 729-749.
  • Chen, C.S., & Hsu, S.C. (2001). Measurement of indirect tensile strength of anisotropic rocks by the ring test. Rock Mechanics and Rock Engineering, 34(4), 293–321. https://doi.org/10.1007/s006030170003
  • Chen, H., & Hu, Z.Y. (2003). Some factors affecting the uniaxial strength of weak sandstones. Bulletin of Engineering Geology and the Environment, 62(4), 223-232. https://doi.org/10.1007/s10064-003-0207-4
  • Chang, C., Zoback, M.D., & Khaksar, A. (2006). Empirical relations between rock strength and physical properties in sedimentary rocks. Journal of Petroleum Science and Engineering, 51(3-4), 223-237. https://doi.org/10.1006/j.petrol.2006.01.003
  • Chen, X., Schmıtt, D.R., Kessler, J.A., Evans, J., & Kofman, R. (2015). Empirical relations between ultrasonic p-wave velocity, porosity and uniaxial compressive strength. Cseg Recorder, 40(5), 24-29.
  • Cho, J.W., Kim, H., Jeon, S., & Min, K.B. (2012). Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 50, 158-169. https://doi.org/10.1006/j.ijrmms.2011.12.004
  • Columbu, S., Lisci, C., Sitzia, F., & Buccellato, G. (2017). Physical-mechanical consolidation and protection of Miocenic limestone used on Mediterranean historical monuments: the case study of Pietra Cantone (Southern Sardinia, Italy). Environmental Earth Sciences, 76(4), 148. https://doi.org/10.1007/s12665-017-6455-6
  • Çolak, K. (1998). A study on the strength and deformation anisotropy of coal measure rocks at Zonguldak basin [PhD. Thesis, Zonguldak Karaelmas Üniversitesi Fen Bilimleri Enstitüsü].
  • Dag, S. (2018). Determining the degree of saturation of rocks as a function of time: A case study from mountainous area of Turkey. Journal of Mountain Science, 15(10), 2307-2319. https://doi.org/10.1007/s11629-018-5055-6
  • Donath, F.A. (1964). Strength variation and deformational behavior in anisotropic rock, in state of stress in the earth’s crust, Judd W.R (Ed.), In State of Stress in the Earth’s (ss.280-297). Elsevier.
  • Eyüboğlu, Y., Dudas, F.O., Thorkelson, D., Zhu, D., Liu, Z., & Chatterjee, N. (2017). Eocene granitoids of Northern Turkey: polybaric magmatism in an evolving arc–slab window system. Gondwana Research, 50, 311-345. https://doi.org/10.1016/j.gr.2017.05.008
  • Folk, R.L., Andrews, P.B., & Lewis, D.W. (1970). Detrital sedimentary rock classification and nomenclature for use New Zealand. New Zealand Journal of Geology and Geophysics,13(4), 937-963.
  • Franzini, M., Leoni, L., Lezzerini, M., & Cardelli, R. (2007). Relationships between mineralogical composition, water absorption and hydric dilatation in the "Macigno" sandstones from Lunigiana (Massa, Tuscany). European Journal of Mineralogy, 19(1), 113-123. https://doi.org/10.1127/0935-1221/2007/0019-0113
  • Garagon, M. (2007). Investigation of anisotropic strength and deformation properties of the selected sandstones from tertiary units of the Adana basin [Ms. Thesis, Çukurova Üniversitesi Fen Bilimleri Enstitüsü].
  • Gökçe, M.V. (2015). The effects of bedding directions on abrasion resistance in travertine rocks. Turkish Journal of Earth Sciences, 24(2), 196-207. https://doi.org/10.3906/yer-1404-6
  • Gurocak, Z., Solanki, P., Alemdag, S., & Zaman, M.M. (2012). New considerations for empirical estimation of tensile strength of rocks. Engineering Geology, 145,1-8. https://doi.org/10.1016/j.enggeo.2012.06.005
  • Güven, İ.H. (1993). 1:250000-Scaled geology and compilation of the Eastern Pontide. General Directorate of Mineral Research and Exploration (MTA) of Turkey, Ankara.
  • Helle, H.B., Pham, N.H., & Carcione, J.M. (2003). Velocity and attenuation in partially saturated rocks: poroelastic numerical experiments. Geophysical Prospecting, 51(6), 551-566. https://doi.org/10.1046/j.1365-2478.2003.00393.x He, T. (2006). P- and S-wave velocity measurement and pressure sensitivity analysis of AVA response [Ms Thesis, University of Alberta].
  • Heidari, M., Momeni, A.A., Rafiei, B., Khodabakhsh, S., & Torabi-Kahev, M. (2013). Relationship between petrographic characteristics and the engineering properties of Jurassic sandstones, Hamedan, Iran. Rock Mechanics and Rock Engineering, 46(5), 1091-1101. https://doi.org/ 10.1007/s00603-012-0333-z
  • ISRM. (2007). The complete ISRM suggested methods for rock characterization, testing and monitoring.
  • Jianhong, Y., Wu, F.Q., & Sun, J.Z. (2009). Estimation of the tensile elastic modulus using brazilian disc by applying diametrically opposed concentrated loads. International Journal of Rock Mechanics and Mining Sciences, 46(3), 568–576. https://doi.org/10.1016/j.ijrmms.2008.08.004
  • Ji, S., & Marcotte, D., (2009). Correlations between Poisson’s ratio and seismic wave velocities for some common rocks and sulfide ores. Tectonophysıcs, 469(1), 61-72. https://doi.org/ 10.1016/j.tecto.2009.01.025
  • Kahraman, S. (2007). The correlations between the saturated and dry P-wave velocity of rocks. Ultrasonics, 46(4), 341-348. https://doi.org/10.1016/j.ultras.2007.05.003
  • Kandemir, R., (2004). Sedimentary characteristics and accumulation conditions of early-middle Jurassic aged Şenköy formation nearby Gümüşhane [PhD Thesis, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü].
  • Karakul, H., & Ulusay, R. (2012). Prediction of strength properties of rocks at different saturation conditions from P-wave velocity and sensitivity of P-wave velocity to physical properties. Hacettepe Earthscience, 33(3), 239-268 (In Turkish).
  • Karakul, H., & Ulusay, R. (2013). Empirical correlations for predicting strength properties of rocks from P-wawe velocity under different degree of saturation. Rock Mechanics and Rock Engineering, 46(5), 981-999. https://doi.org/10.1007/s00603-012-0353-8
  • Karaman, K., Kaya, A., & Kesimal, A. (2015). Effect of the specimen length on ultrasonic P-wave velocity in some volcanic rocks and limestones. Journal of African Earth Sciences, 112, 142-149. https://doi.org/10.1016/j.jafrearsci.2015.09.017
  • Kaya, A., & Karaman, K. (2016). Utilizing the strength conversion factor in the estimation of uniaxial compressive strength from the point load index. Bulletin of Engineering Geology and the Environment, 75(1), 341-357. https://doi.org/10.1007/s10064-015-0721-1
  • Ketin, İ. (1966). Tectonic units of Anatolian. Bulletin of The Mineral Research and Exploration (MTA).
  • Kim, K.Y., Zhuang, L., Yang, H., Kim, H., & Min, K.B. (2016). Strength anisotropy of Berea Sandstone: results of x-ray computed tomography, compression tests, and discrete modeling. Rock Mechanics and Rock Engineering, 49(4), 1201–1210. https://doi.org/10.1007/s00603-015-0820-0
  • Kumar, A. (2006). Engineering behavior of anisotropic rocks [PhD Thesis, Indian Institute of Technology Roorkee].
  • Kundu, J., Mahanta, B., Sarkar, K., & Singh, T.H. (2018). The effect of lineation on anisotropy in dry and saturated Himalayan Schistose rock under Brazilian test conditions. Rock Mechanics and Rock Engineering, 51(1), 5–21. https://doi.org/10.1007/s00603-017-1300-5
  • Lezzerini, M., Franzini, M., Di Battistini, G., & Zucchi, D. (2008). The “macigno” sandstone from Matraia and Pian di Lanzola quarries (north-western Tuscany, Italy). A comparison of physical and mechanical properties. Atti della Società Toscana di Scienze Naturali, Memorie Serie A, 113, 71-79.
  • Li, X., Lei, X., Li, Q., & Chen, D. (2021). Influence of bedding structure on stress-induced elastic wave anisotropy in tight sandstones. Journal of Rock Mechanics and Geotechnical Engineering, 13(1), 98-113. https://doi.org/10.1016/j.jrmge.2020.06.003 Lin, C., He, J., Li, X., Wan, X., & Zheng, B. (2017). An experimental investigation into the effects of the anisotropy of shale on hydraulic fracture propagation. Rock Mechanics and Rock Engineering, 50(3), 543-554. https://doi.org/10.1007/s00603-016-1136-4
  • Matsukara, Y., Hazhizume, K., & Oguchi, C.T. (2002). Effect of microstructure and weathering on the strength anisotropy of porous rhyolite. Engineering Geology, 63, 39-47. https://doi.org/10.1016/S0013-7952(01)00067-9
  • Moradian, Z.A., & Behnia, M. (2009). Predicting the uniaxial compressive strength and static young’s modulus of intact sedimentary rocks using the ultrasonic test. International Journal of Geomechanics, 9(1), 14-19. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:1(14) Nasseri, M.H.B., Rao, K.S., & Ramamurthy, T. (2003). Anisotropic strength and deformation behavior of Himalayan schists. International Journal of Rock Mechanics and Mining Sciences, 40(1), 3-23. https://doi.org/10.1016/S1365-1609(02)00103-X
  • Onur, A.H., Bakraç, S., & Karakuş, D. (2012). Ultrasonic waves in mining application, In Auteliano Santos Jr. (Ed), Ultrasonic Waves (pp 189-211). In Tech.
  • Pelin, S. (1977). Geological survey of Alucra (Giresun) southeastern region in terms of petroleum possibilities. Karadeniz Technical University Faculty of Earthscience Publications (In Turkish).
  • Ramamurthy, T. (1993). Strength and modulus response of anisotropic rocks. In Hudson JA (Ed), Compressive rock engineering principle, practice and projects volume 1 (pp 313–329). Pergamon Press, Oxford.
  • Singh, T.N., & Sharma, P.K. (2008). A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bulletin of Engineering Geology and the Environment, 67(1), 17-22. https://doi.org/10.1007/s10064-007-0109-y
  • Singh, M., Samadhiya, N.K., Kumar, A., Kumar, V., & Singh, B. (2015). A nonlinear criterion for triaxial strength of inherently anisotropic rocks. Rock Mechanics and Rock Engineering, 48(4), 1387–1405. https://doi.org/10.1007/s00603-015-0708-z
  • Tavallali, A., & Vervoort, A. (2010). Failure of layered sandstone under Brazilian test conditions: effect of micro-scale parameters on macro-scale behaviour. Rock Mechanics and Rock Engineering, 43(5), 641-653. https://doi.org/10.1007/s00603-010-0084-7
  • Tavallali, A., & Vervoort, A., (2013). Behaviour of layered sandstone under Brazilian test conditions: Layer orientation and shape effects. Journal of Rock Mechanics and Geotechnical Engineering, 5(5), 366-377. https://doi.org/10.1016/j.jrmge.2013.01.004
  • Tokel, S. (1972). Stratigraphical and volcanic history of the Gümüşhane region, N.E. Turkey. University College, London.
  • Topuz, G., Altherr, R., Wolfgang, S., Schwarz, W.H., Zack, T., Hasanözbek, A., Mathias, B., Satır, M., & Şen, C. (2010). Carboniferous high-potassium I-type granitoid magmatism in the Eastern Pontides: The Gümüşhane pluton (NE Turkey). Lithos, 116(1-2), 92-110. https://doi.org/ 10.1016/j.lithos.2010.01.003
  • Török, A., & Vásárhelyi, B. (2010). The influence of fabric and water content on selected rock mechanical parameters of travertine, examples from Hungary. Engineering Geology, 115(3-4), 237-245. https://doi.org/10.1016/j.enggeo.2010.01.005
  • Vásárhelyi, B. (2003). Some observations regarding the strength and deformability of sandstones in dry and saturated conditions. Bulletin of Engineering Geology and the Environment, 62(3), 245-249. https://doi.org/10.1007/s10064-002-0186-x
  • Wang, P., Cai, M., Ren, F., Li, C., & Yang, T. (2017). Theoretical investigation of deformation characteristics of stratified rocks considering geometric and mechanical variability. Geosciences Journal, 21, 213–222. https://doi.org/10.1007/s12303-016-0052-7
  • Yaşar, E. (2001). Failure and failure theories for anisotropic rocks. 17th international mining congress and exhibition of Turkey (IMCET) (pp 417–424).
  • Yin, Q., Jing, H., & Su, H. (2018). Investigation on mechanical behavior and crack coalescence of sandstone specimens containing fissure-hole combined flaws under uniaxial compression. Geosciences Journal, 22, 825–842. https://doi.org/10.1007/s12303-017-0081-x
  • Yücel, Ö. (2012). Evaluation of the usefulness and performance of the core strangle test (cst) for determination of the strength anisotropy in rocks [Ms Thesis, Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü].
  • Zhang, X.M., Yang, F., & Yang, J.S. (2010). Experimental study on anisotropic strength properties of sandstone. Electronic Journal of Geotechnical Engineering, 15, 1325–1335.

Investigation of changes in geomechanical properties of sandstones under different saturation and anisotropy conditions: Example from Gümüşhane (NE Türkiye)

Year 2023, Volume: 13 Issue: 3, 616 - 631, 15.07.2023
https://doi.org/10.17714/gumusfenbil.1274987

Abstract

In this study, the changes in various geomechanical properties were studied for sandstones cropped out at the Mescitli region of the Gümüşhane city under different saturation and anisotropy conditions. For this purpose, 225 specimens were prepared considering the lamination planes of those were chosen to have orientation of 0, 30, 45, 60 and 90° relative to loading direction. Index properties of the sandstones such as dry unit weight (dry), saturated unit weight (sat), water absorption by weight (Aw) and water absorption by volume (Av) were assigned. In accordance with the objective of study P wave velocity, uniaxial compressive strength and indirect tensile strength values were determined based on different saturation and anisotropy conditions. It was noted as a result of the observations carried out that specimens parallel to lamination have higher wave velocities in general when compared with specimens that are perpendicular to lamination planes. While uniaxial compressive strength values for sandstones are high for specimens which are parallel and perpendicular to lamination, the lowest strength value was observed in specimens with an anisotropy angle of 30°. In addition, it was also observed that the strength values decrease at a significant level with increasing saturation conditions. Strength anisotropy ratio (RUCS) for sandstones varies between 1.28–1.49 based on different saturation conditions. Similarly, while indirect tensile strength values were higher in specimens that were parallel and perpendicular to lamination, they were lower for other anisotropy orientations. Indirect tensile strength values also decreased with increasing degree of saturation.

References

  • Ajalloeian, R., & Lahskaripour, G.R. (2000). Strength anizotropies in mudrocks. Bulletin of Engineering Geology and the Environment, 59(3), 195-199. https://doi.org/10.1007/s100640000055
  • Alkan, F., & Dağ, S, (2018). Investigation of the relations between geomechanical properties of some rocks of magmatic origins outcrop in Gümüşhane region. Uludağ University Journal of the Faculty of Engineering, 23(2), 203–216. (In Turkish). https://doi.org/ 10.17482/uumfd.409184
  • Amadei, B. (1996). Importance of anisotropy when estimating and measuring in situ stresses in rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 33(1), 293-325. https://doi.org/10.1006/0148-9062(95)00062-3
  • Batugin, S.A., & Nirenburg, R.K. (1972). Approximate relation between the elastic constants of anisotropic rocks and the anisotropy parameters. Soviet Mining Science, 8, 5-9.
  • Behrestaghi, M.H.N., Rao K.S., & Ramamurthy, T. (1996.) Engineering geological and geotechnical responses of schistose rocks from dam project areas in India. Engineering Geology, 44(1-4), 183-201. https://doi.org/10.1016/S0013-7952(96)00069-5
  • Buosi, C., Columbu, S., Ennas, G., Pittau, P., & Scanu, G.G. (2018). Mineralogical, petrographic, and physical investigations on fossiliferous middle Jurassic sandstones from central Sardinia (Italy) to define their alteration and experimental consolidation. Geoheritage, 11(3), 729-749.
  • Chen, C.S., & Hsu, S.C. (2001). Measurement of indirect tensile strength of anisotropic rocks by the ring test. Rock Mechanics and Rock Engineering, 34(4), 293–321. https://doi.org/10.1007/s006030170003
  • Chen, H., & Hu, Z.Y. (2003). Some factors affecting the uniaxial strength of weak sandstones. Bulletin of Engineering Geology and the Environment, 62(4), 223-232. https://doi.org/10.1007/s10064-003-0207-4
  • Chang, C., Zoback, M.D., & Khaksar, A. (2006). Empirical relations between rock strength and physical properties in sedimentary rocks. Journal of Petroleum Science and Engineering, 51(3-4), 223-237. https://doi.org/10.1006/j.petrol.2006.01.003
  • Chen, X., Schmıtt, D.R., Kessler, J.A., Evans, J., & Kofman, R. (2015). Empirical relations between ultrasonic p-wave velocity, porosity and uniaxial compressive strength. Cseg Recorder, 40(5), 24-29.
  • Cho, J.W., Kim, H., Jeon, S., & Min, K.B. (2012). Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 50, 158-169. https://doi.org/10.1006/j.ijrmms.2011.12.004
  • Columbu, S., Lisci, C., Sitzia, F., & Buccellato, G. (2017). Physical-mechanical consolidation and protection of Miocenic limestone used on Mediterranean historical monuments: the case study of Pietra Cantone (Southern Sardinia, Italy). Environmental Earth Sciences, 76(4), 148. https://doi.org/10.1007/s12665-017-6455-6
  • Çolak, K. (1998). A study on the strength and deformation anisotropy of coal measure rocks at Zonguldak basin [PhD. Thesis, Zonguldak Karaelmas Üniversitesi Fen Bilimleri Enstitüsü].
  • Dag, S. (2018). Determining the degree of saturation of rocks as a function of time: A case study from mountainous area of Turkey. Journal of Mountain Science, 15(10), 2307-2319. https://doi.org/10.1007/s11629-018-5055-6
  • Donath, F.A. (1964). Strength variation and deformational behavior in anisotropic rock, in state of stress in the earth’s crust, Judd W.R (Ed.), In State of Stress in the Earth’s (ss.280-297). Elsevier.
  • Eyüboğlu, Y., Dudas, F.O., Thorkelson, D., Zhu, D., Liu, Z., & Chatterjee, N. (2017). Eocene granitoids of Northern Turkey: polybaric magmatism in an evolving arc–slab window system. Gondwana Research, 50, 311-345. https://doi.org/10.1016/j.gr.2017.05.008
  • Folk, R.L., Andrews, P.B., & Lewis, D.W. (1970). Detrital sedimentary rock classification and nomenclature for use New Zealand. New Zealand Journal of Geology and Geophysics,13(4), 937-963.
  • Franzini, M., Leoni, L., Lezzerini, M., & Cardelli, R. (2007). Relationships between mineralogical composition, water absorption and hydric dilatation in the "Macigno" sandstones from Lunigiana (Massa, Tuscany). European Journal of Mineralogy, 19(1), 113-123. https://doi.org/10.1127/0935-1221/2007/0019-0113
  • Garagon, M. (2007). Investigation of anisotropic strength and deformation properties of the selected sandstones from tertiary units of the Adana basin [Ms. Thesis, Çukurova Üniversitesi Fen Bilimleri Enstitüsü].
  • Gökçe, M.V. (2015). The effects of bedding directions on abrasion resistance in travertine rocks. Turkish Journal of Earth Sciences, 24(2), 196-207. https://doi.org/10.3906/yer-1404-6
  • Gurocak, Z., Solanki, P., Alemdag, S., & Zaman, M.M. (2012). New considerations for empirical estimation of tensile strength of rocks. Engineering Geology, 145,1-8. https://doi.org/10.1016/j.enggeo.2012.06.005
  • Güven, İ.H. (1993). 1:250000-Scaled geology and compilation of the Eastern Pontide. General Directorate of Mineral Research and Exploration (MTA) of Turkey, Ankara.
  • Helle, H.B., Pham, N.H., & Carcione, J.M. (2003). Velocity and attenuation in partially saturated rocks: poroelastic numerical experiments. Geophysical Prospecting, 51(6), 551-566. https://doi.org/10.1046/j.1365-2478.2003.00393.x He, T. (2006). P- and S-wave velocity measurement and pressure sensitivity analysis of AVA response [Ms Thesis, University of Alberta].
  • Heidari, M., Momeni, A.A., Rafiei, B., Khodabakhsh, S., & Torabi-Kahev, M. (2013). Relationship between petrographic characteristics and the engineering properties of Jurassic sandstones, Hamedan, Iran. Rock Mechanics and Rock Engineering, 46(5), 1091-1101. https://doi.org/ 10.1007/s00603-012-0333-z
  • ISRM. (2007). The complete ISRM suggested methods for rock characterization, testing and monitoring.
  • Jianhong, Y., Wu, F.Q., & Sun, J.Z. (2009). Estimation of the tensile elastic modulus using brazilian disc by applying diametrically opposed concentrated loads. International Journal of Rock Mechanics and Mining Sciences, 46(3), 568–576. https://doi.org/10.1016/j.ijrmms.2008.08.004
  • Ji, S., & Marcotte, D., (2009). Correlations between Poisson’s ratio and seismic wave velocities for some common rocks and sulfide ores. Tectonophysıcs, 469(1), 61-72. https://doi.org/ 10.1016/j.tecto.2009.01.025
  • Kahraman, S. (2007). The correlations between the saturated and dry P-wave velocity of rocks. Ultrasonics, 46(4), 341-348. https://doi.org/10.1016/j.ultras.2007.05.003
  • Kandemir, R., (2004). Sedimentary characteristics and accumulation conditions of early-middle Jurassic aged Şenköy formation nearby Gümüşhane [PhD Thesis, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü].
  • Karakul, H., & Ulusay, R. (2012). Prediction of strength properties of rocks at different saturation conditions from P-wave velocity and sensitivity of P-wave velocity to physical properties. Hacettepe Earthscience, 33(3), 239-268 (In Turkish).
  • Karakul, H., & Ulusay, R. (2013). Empirical correlations for predicting strength properties of rocks from P-wawe velocity under different degree of saturation. Rock Mechanics and Rock Engineering, 46(5), 981-999. https://doi.org/10.1007/s00603-012-0353-8
  • Karaman, K., Kaya, A., & Kesimal, A. (2015). Effect of the specimen length on ultrasonic P-wave velocity in some volcanic rocks and limestones. Journal of African Earth Sciences, 112, 142-149. https://doi.org/10.1016/j.jafrearsci.2015.09.017
  • Kaya, A., & Karaman, K. (2016). Utilizing the strength conversion factor in the estimation of uniaxial compressive strength from the point load index. Bulletin of Engineering Geology and the Environment, 75(1), 341-357. https://doi.org/10.1007/s10064-015-0721-1
  • Ketin, İ. (1966). Tectonic units of Anatolian. Bulletin of The Mineral Research and Exploration (MTA).
  • Kim, K.Y., Zhuang, L., Yang, H., Kim, H., & Min, K.B. (2016). Strength anisotropy of Berea Sandstone: results of x-ray computed tomography, compression tests, and discrete modeling. Rock Mechanics and Rock Engineering, 49(4), 1201–1210. https://doi.org/10.1007/s00603-015-0820-0
  • Kumar, A. (2006). Engineering behavior of anisotropic rocks [PhD Thesis, Indian Institute of Technology Roorkee].
  • Kundu, J., Mahanta, B., Sarkar, K., & Singh, T.H. (2018). The effect of lineation on anisotropy in dry and saturated Himalayan Schistose rock under Brazilian test conditions. Rock Mechanics and Rock Engineering, 51(1), 5–21. https://doi.org/10.1007/s00603-017-1300-5
  • Lezzerini, M., Franzini, M., Di Battistini, G., & Zucchi, D. (2008). The “macigno” sandstone from Matraia and Pian di Lanzola quarries (north-western Tuscany, Italy). A comparison of physical and mechanical properties. Atti della Società Toscana di Scienze Naturali, Memorie Serie A, 113, 71-79.
  • Li, X., Lei, X., Li, Q., & Chen, D. (2021). Influence of bedding structure on stress-induced elastic wave anisotropy in tight sandstones. Journal of Rock Mechanics and Geotechnical Engineering, 13(1), 98-113. https://doi.org/10.1016/j.jrmge.2020.06.003 Lin, C., He, J., Li, X., Wan, X., & Zheng, B. (2017). An experimental investigation into the effects of the anisotropy of shale on hydraulic fracture propagation. Rock Mechanics and Rock Engineering, 50(3), 543-554. https://doi.org/10.1007/s00603-016-1136-4
  • Matsukara, Y., Hazhizume, K., & Oguchi, C.T. (2002). Effect of microstructure and weathering on the strength anisotropy of porous rhyolite. Engineering Geology, 63, 39-47. https://doi.org/10.1016/S0013-7952(01)00067-9
  • Moradian, Z.A., & Behnia, M. (2009). Predicting the uniaxial compressive strength and static young’s modulus of intact sedimentary rocks using the ultrasonic test. International Journal of Geomechanics, 9(1), 14-19. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:1(14) Nasseri, M.H.B., Rao, K.S., & Ramamurthy, T. (2003). Anisotropic strength and deformation behavior of Himalayan schists. International Journal of Rock Mechanics and Mining Sciences, 40(1), 3-23. https://doi.org/10.1016/S1365-1609(02)00103-X
  • Onur, A.H., Bakraç, S., & Karakuş, D. (2012). Ultrasonic waves in mining application, In Auteliano Santos Jr. (Ed), Ultrasonic Waves (pp 189-211). In Tech.
  • Pelin, S. (1977). Geological survey of Alucra (Giresun) southeastern region in terms of petroleum possibilities. Karadeniz Technical University Faculty of Earthscience Publications (In Turkish).
  • Ramamurthy, T. (1993). Strength and modulus response of anisotropic rocks. In Hudson JA (Ed), Compressive rock engineering principle, practice and projects volume 1 (pp 313–329). Pergamon Press, Oxford.
  • Singh, T.N., & Sharma, P.K. (2008). A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bulletin of Engineering Geology and the Environment, 67(1), 17-22. https://doi.org/10.1007/s10064-007-0109-y
  • Singh, M., Samadhiya, N.K., Kumar, A., Kumar, V., & Singh, B. (2015). A nonlinear criterion for triaxial strength of inherently anisotropic rocks. Rock Mechanics and Rock Engineering, 48(4), 1387–1405. https://doi.org/10.1007/s00603-015-0708-z
  • Tavallali, A., & Vervoort, A. (2010). Failure of layered sandstone under Brazilian test conditions: effect of micro-scale parameters on macro-scale behaviour. Rock Mechanics and Rock Engineering, 43(5), 641-653. https://doi.org/10.1007/s00603-010-0084-7
  • Tavallali, A., & Vervoort, A., (2013). Behaviour of layered sandstone under Brazilian test conditions: Layer orientation and shape effects. Journal of Rock Mechanics and Geotechnical Engineering, 5(5), 366-377. https://doi.org/10.1016/j.jrmge.2013.01.004
  • Tokel, S. (1972). Stratigraphical and volcanic history of the Gümüşhane region, N.E. Turkey. University College, London.
  • Topuz, G., Altherr, R., Wolfgang, S., Schwarz, W.H., Zack, T., Hasanözbek, A., Mathias, B., Satır, M., & Şen, C. (2010). Carboniferous high-potassium I-type granitoid magmatism in the Eastern Pontides: The Gümüşhane pluton (NE Turkey). Lithos, 116(1-2), 92-110. https://doi.org/ 10.1016/j.lithos.2010.01.003
  • Török, A., & Vásárhelyi, B. (2010). The influence of fabric and water content on selected rock mechanical parameters of travertine, examples from Hungary. Engineering Geology, 115(3-4), 237-245. https://doi.org/10.1016/j.enggeo.2010.01.005
  • Vásárhelyi, B. (2003). Some observations regarding the strength and deformability of sandstones in dry and saturated conditions. Bulletin of Engineering Geology and the Environment, 62(3), 245-249. https://doi.org/10.1007/s10064-002-0186-x
  • Wang, P., Cai, M., Ren, F., Li, C., & Yang, T. (2017). Theoretical investigation of deformation characteristics of stratified rocks considering geometric and mechanical variability. Geosciences Journal, 21, 213–222. https://doi.org/10.1007/s12303-016-0052-7
  • Yaşar, E. (2001). Failure and failure theories for anisotropic rocks. 17th international mining congress and exhibition of Turkey (IMCET) (pp 417–424).
  • Yin, Q., Jing, H., & Su, H. (2018). Investigation on mechanical behavior and crack coalescence of sandstone specimens containing fissure-hole combined flaws under uniaxial compression. Geosciences Journal, 22, 825–842. https://doi.org/10.1007/s12303-017-0081-x
  • Yücel, Ö. (2012). Evaluation of the usefulness and performance of the core strangle test (cst) for determination of the strength anisotropy in rocks [Ms Thesis, Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü].
  • Zhang, X.M., Yang, F., & Yang, J.S. (2010). Experimental study on anisotropic strength properties of sandstone. Electronic Journal of Geotechnical Engineering, 15, 1325–1335.
There are 57 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Zarife Gültekin 0000-0002-9632-088X

Serhat Dağ 0000-0003-2341-257X

Publication Date July 15, 2023
Submission Date March 31, 2023
Acceptance Date May 27, 2023
Published in Issue Year 2023 Volume: 13 Issue: 3

Cite

APA Gültekin, Z., & Dağ, S. (2023). Investigation of changes in geomechanical properties of sandstones under different saturation and anisotropy conditions: Example from Gümüşhane (NE Türkiye). Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(3), 616-631. https://doi.org/10.17714/gumusfenbil.1274987