Research Article
BibTex RIS Cite

Liquefaction of biomass by catalytic hydrothermal liquefaction in the presence of heterogeneous catalyst and characterization of the obtained products

Year 2023, Volume: 13 Issue: 3, 675 - 687, 15.07.2023
https://doi.org/10.17714/gumusfenbil.1279608

Abstract

Biomass can be converted into more valuable forms of energy by many thermal, biological and physical methods. While energy can be obtained by direct combustion of biomass, solid, liquid and gaseous fuels can be obtained from biomass by various thermochemical conversion methods (Hydrothermal liquefaction, pyrolysis and gasification). Hydrothermal liquefaction is one of the thermochemical processes used to convert biomass into liquid products with high energy content. Various catalysts (homogeneous and heterogeneous) can be used in the hydrothermal liquefaction process. It has been stated in the relevant literature that heterogeneous catalysts have various advantages such as recovery and obtaining liquid products with low oxygen content. In this study, the stem of Glycyrrhiza glabra L. (Liquorice) plant is liquefied for the first time in the presence of Al and Fe metal powders catalyst. In the trials, 300, 325 and 350 °C temperature and 30 minutes waiting time parameters are determined. GC–MS and elemental analysis methods are used for the characterization of the products. For light bio-oil and heavy bio-oil, the optimum temperature was 325°C and the highest energy value was 32.01 Mj/kg in the presence of Fe catalyst. Heterogeneous catalyst is found to be effective in the liquefaction of Glycyrrhiza glabra L. plant.

References

  • Briens, C., Piskorz, J., & Berruti, F. (2008). Biomass Valorization for Fuel and Chemicals Production -- A Review: International Journal of Chemical Reactor Engineering, 6(1). https://doi.org/doi:10.2202/1542-6580.1674
  • Brunner, G. (2014). Hydrothermal and supercritical water processes. Elsevier.
  • Cheng, F., Tompsett, G. A., Murphy, C. M., Maag, A. R., Carabillo, N., Bailey, M., Hemingway, J. J., Romo, C. I., Paulsen, A. D., Yelvington, P. E., & Timko, M. T. (2020). Synergistic Effects of Inexpensive Mixed Metal Oxides for Catalytic Hydrothermal Liquefaction of Food Wastes. ACS Sustainable Chemistry & Engineering, 8(17), 6877–6886. https://doi.org/10.1021/acssuschemeng.0c02059
  • Çolak, U., Durak, H., & Genel, S. (2018). Hydrothermal liquefaction of Syrian mesquite (Prosopis farcta): Effects of operating parameters on product yields and characterization by different analysis methods. The Journal of Supercritical Fluids, 140, 53–61. https://doi.org/https://doi.org/10.1016/j.supflu.2018.05.027
  • Durak, H. (2014). Bio-oil production from Glycyrrhiza glabra through supercritical fluid extraction. The Journal of Supercritical Fluids, 95, 373–386. https://doi.org/https://doi.org/10.1016/j.supflu.2014.08.009
  • Durak, H. (2018). Trametes versicolor (L.) mushrooms liquefaction in supercritical solvents: Effects of operating conditions on product yields and chromatographic characterization. The Journal of Supercritical Fluids, 131, 140–149. https://doi.org/https://doi.org/10.1016/j.supflu.2017.09.013
  • Durak, H. (2019). Characterization of products obtained from hydrothermal liquefaction of biomass (Anchusa azurea) compared to other thermochemical conversion methods. Biomass Conversion and Biorefinery, 9(2), 459–470. https://doi.org/10.1007/s13399-019-00379-4
  • Durak, H. (2020). Hydrothermal liquefaction of Glycyrrhiza glabra L. (Liquorice): Effects of catalyst on variety compounds and chromatographic characterization. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(20), 2471–2484. https://doi.org/10.1080/15567036.2019.1607947
  • Durak, H., & Aysu, T. (2016). Thermochemical liquefaction of algae for bio-oil production in supercritical acetone/ethanol/isopropanol. The Journal of Supercritical Fluids, 111, 179–198. https://doi.org/10.1016/J.SUPFLU.2015.11.021
  • Durak, H., & Genel, S. (2020). Catalytic hydrothermal liquefaction of lactuca scariola with a heterogeneous catalyst: The investigation of temperature, reaction time and synergistic effect of catalysts. Bioresource Technology, 309, 123375. https://doi.org/10.1016/J.BIORTECH.2020.123375
  • Durak, H., & Genel, Y. (2018). Hydrothermal conversion of biomass (Xanthium strumarium) to energetic materials and comparison with other thermochemical methods. The Journal of Supercritical Fluids, 140, 290–301. https://doi.org/https://doi.org/10.1016/j.supflu.2018.07.005
  • Durak, H., Genel, S., Durak, E. D., Özçimen, D., & Koçer, A. T. (2022). Hydrothermal liquefaction process of Ammi visnaga and a new approach for recycling of the waste process water: cultivation of algae and fungi. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-03221-6
  • Genel, S., Durak, H., Durak, E. D., Güneş, H., & Genel, Y. (2023). Hydrothermal liquefaction of biomass with molybdenum, aluminum, cobalt metal powder catalysts and evaluation of wastewater by fungus cultivation. Renewable Energy, 203, 20–32. https://doi.org/https://doi.org/10.1016/j.renene.2022.12.030
  • Gollakota, A. R. K., Kishore, N., & Gu, S. (2018). A review on hydrothermal liquefaction of biomass. Renewable and Sustainable Energy Reviews, 81, 1378–1392. https://doi.org/10.1016/J.RSER.2017.05.178
  • He, W., Li, G., Kong, L., Wang, H., Huang, J., & Xu, J. (2008). Application of hydrothermal reaction in resource recovery of organic wastes. Resources, Conservation and Recycling, 52(5), 691–699. https://doi.org/https://doi.org/10.1016/j.resconrec.2007.11.003
  • Huntley, M. E., & Redalje, D. G. (2007). CO2 Mitigation and Renewable Oil from Photosynthetic Microbes: A New Appraisal. Mitigation and Adaptation Strategies for Global Change, 12(4), 573–608. https://doi.org/10.1007/s11027-006-7304-1
  • Klass, D. L. (1998). Chapter 2 - Biomass as an Energy Resource: Concept and Markets. In D. L. Klass (Ed.), Biomass for Renewable Energy, Fuels, and Chemicals (pp. 29–50). Academic Press. https://doi.org/https://doi.org/10.1016/B978-012410950-6/50004-0
  • KOÇER, N., & Ayhan, Ü. (2007). Doğu anadolu bölgesinin biyokütle potansiyeli ve enerji üretimi. Fırat Üniversitesi Doğu Araştırmaları Dergisi, 5(2), 175–181.
  • Kumar, M., Olajire Oyedun, A., & Kumar, A. (2018). A review on the current status of various hydrothermal technologies on biomass feedstock. Renewable and Sustainable Energy Reviews, 81, 1742–1770. https://doi.org/https://doi.org/10.1016/j.rser.2017.05.270
  • Li, N., Wei, L., bibi, R., Chen, L., Liu, J., Zhang, L., Zheng, Y., & Zhou, J. (2016). Catalytic hydrogenation of alkali lignin into bio-oil using flower-like hierarchical MoS2-based composite catalysts. Fuel, 185, 532–540. https://doi.org/10.1016/J.FUEL.2016.08.001
  • Long, H., Li, X., Wang, H., & Jia, J. (2013). Biomass resources and their bioenergy potential estimation: A review. Renewable and Sustainable Energy Reviews, 26, 344–352. https://doi.org/https://doi.org/10.1016/j.rser.2013.05.035
  • Peterson, A. A., Vogel, F., Lachance, R. P., Fröling, M., Antal Jr, M. J., & Tester, J. W. (2008). Thermochemical biofuel production in hydrothermal media: a review of sub-and supercritical water technologies. Energy & Environmental Science, 1(1), 32–65. https://doi.org/10.1039/B810100K
  • Tekin, K., Karagöz, S., & Bektaş, S. (2012). Hydrothermal liquefaction of beech wood using a natural calcium borate mineral. The Journal of Supercritical Fluids, 72, 134–139. https://doi.org/https://doi.org/10.1016/j.supflu.2012.08.016
  • Toor, S. S., Rosendahl, L., & Rudolf, A. (2011). Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 36(5), 2328–2342. https://doi.org/10.1016/J.ENERGY.2011.03.013
  • Wang, S., Dai, G., Yang, H., & Luo, Z. (2017). Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science, 62, 33–86. https://doi.org/https://doi.org/10.1016/j.pecs.2017.05.004
  • Wise, L. E., & Jahn, E. C. (1952). Wood Chemistry (Issue 1. c.). Books on Demand. https://books.google.com.tr/books?id=bErVAAAAMAAJ
  • Zhao, B., Li, H., Wang, H., Hu, Y., Gao, J., Zhao, G., Ray, M. B., & Xu, C. C. (2021). Synergistic effects of metallic Fe and other homogeneous/heterogeneous catalysts in hydrothermal liquefaction of woody biomass. Renewable Energy, 176, 543–554. https://doi.org/https://doi.org/10.1016/j.renene.2021.05.115

Biyokütlenin heterojen katalizör varlığında katalitik hidrotermal sıvılaştırma yöntemi ile sıvılaştırılması ve elde edilen ürünlerin karakterizasyonu

Year 2023, Volume: 13 Issue: 3, 675 - 687, 15.07.2023
https://doi.org/10.17714/gumusfenbil.1279608

Abstract

Biyokütle ısıl, biyolojik ve fiziksel birçok yöntemle daha değerli enerji formlarına dönüştürülebilmektedir. Biyokütlenin doğrudan yakılması sonucu enerji elde edilebildiği gibi çeşitli termokimyasal dönüşüm yöntemleri (Hidrotermal sıvılaştırma, piroliz ve gazlaştırma) ile biyokütleden katı, sıvı ve gaz yakıtlar elde edilebilmektedir. Hidrotermal sıvılaştırma biyokütlenin yüksek enerji içeriğine sahip sıvı ürünlere dönüştürülmesinde kullanılan termokimyasal proseslerden biridir. Hidrotermal sıvılaştırma işleminde çeşitli katalizörler (homojen ve heterojen) kullanılabilmektedir. Heterojen katalizörlerin, geri kazanım ve düşük oksijen içeriğine sahip sıvı ürünlerin elde edilmesi gibi çeşitli avantajlara sahip olduğu ilgili literatürde ifade edilmiştir. Bu çalışmada, Glycyrrhiza glabra L. (Meyan) bitkisi sapı, Al ve Fe metal tozları katalizörleri varlığında ilk kez sıvılaştırılmıştır. Denemelerde 300, 325 ve 350 °C sıcaklıklar ile 30 dakika bekleme süresi parametreleri belirlenmiştir. Ürünlerin karakterizasyonu için GC–MS ve elementel analiz yöntemleri kullanılmıştır. Hafif biyo-yağ ve ağır biyo-yağ için optimum sıcaklık 325 °C ve en yüksek enerji değeri Fe katalizörü varlığında 32.01 Mj/kg olarak elde edilmiştir. Sonuçlara göre Glycyrrhiza glabra L. bitkisinin sıvılaştırılmasında heterojen katalizörlerin etkili olduğu gözlemlenmiştir.

References

  • Briens, C., Piskorz, J., & Berruti, F. (2008). Biomass Valorization for Fuel and Chemicals Production -- A Review: International Journal of Chemical Reactor Engineering, 6(1). https://doi.org/doi:10.2202/1542-6580.1674
  • Brunner, G. (2014). Hydrothermal and supercritical water processes. Elsevier.
  • Cheng, F., Tompsett, G. A., Murphy, C. M., Maag, A. R., Carabillo, N., Bailey, M., Hemingway, J. J., Romo, C. I., Paulsen, A. D., Yelvington, P. E., & Timko, M. T. (2020). Synergistic Effects of Inexpensive Mixed Metal Oxides for Catalytic Hydrothermal Liquefaction of Food Wastes. ACS Sustainable Chemistry & Engineering, 8(17), 6877–6886. https://doi.org/10.1021/acssuschemeng.0c02059
  • Çolak, U., Durak, H., & Genel, S. (2018). Hydrothermal liquefaction of Syrian mesquite (Prosopis farcta): Effects of operating parameters on product yields and characterization by different analysis methods. The Journal of Supercritical Fluids, 140, 53–61. https://doi.org/https://doi.org/10.1016/j.supflu.2018.05.027
  • Durak, H. (2014). Bio-oil production from Glycyrrhiza glabra through supercritical fluid extraction. The Journal of Supercritical Fluids, 95, 373–386. https://doi.org/https://doi.org/10.1016/j.supflu.2014.08.009
  • Durak, H. (2018). Trametes versicolor (L.) mushrooms liquefaction in supercritical solvents: Effects of operating conditions on product yields and chromatographic characterization. The Journal of Supercritical Fluids, 131, 140–149. https://doi.org/https://doi.org/10.1016/j.supflu.2017.09.013
  • Durak, H. (2019). Characterization of products obtained from hydrothermal liquefaction of biomass (Anchusa azurea) compared to other thermochemical conversion methods. Biomass Conversion and Biorefinery, 9(2), 459–470. https://doi.org/10.1007/s13399-019-00379-4
  • Durak, H. (2020). Hydrothermal liquefaction of Glycyrrhiza glabra L. (Liquorice): Effects of catalyst on variety compounds and chromatographic characterization. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 42(20), 2471–2484. https://doi.org/10.1080/15567036.2019.1607947
  • Durak, H., & Aysu, T. (2016). Thermochemical liquefaction of algae for bio-oil production in supercritical acetone/ethanol/isopropanol. The Journal of Supercritical Fluids, 111, 179–198. https://doi.org/10.1016/J.SUPFLU.2015.11.021
  • Durak, H., & Genel, S. (2020). Catalytic hydrothermal liquefaction of lactuca scariola with a heterogeneous catalyst: The investigation of temperature, reaction time and synergistic effect of catalysts. Bioresource Technology, 309, 123375. https://doi.org/10.1016/J.BIORTECH.2020.123375
  • Durak, H., & Genel, Y. (2018). Hydrothermal conversion of biomass (Xanthium strumarium) to energetic materials and comparison with other thermochemical methods. The Journal of Supercritical Fluids, 140, 290–301. https://doi.org/https://doi.org/10.1016/j.supflu.2018.07.005
  • Durak, H., Genel, S., Durak, E. D., Özçimen, D., & Koçer, A. T. (2022). Hydrothermal liquefaction process of Ammi visnaga and a new approach for recycling of the waste process water: cultivation of algae and fungi. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-03221-6
  • Genel, S., Durak, H., Durak, E. D., Güneş, H., & Genel, Y. (2023). Hydrothermal liquefaction of biomass with molybdenum, aluminum, cobalt metal powder catalysts and evaluation of wastewater by fungus cultivation. Renewable Energy, 203, 20–32. https://doi.org/https://doi.org/10.1016/j.renene.2022.12.030
  • Gollakota, A. R. K., Kishore, N., & Gu, S. (2018). A review on hydrothermal liquefaction of biomass. Renewable and Sustainable Energy Reviews, 81, 1378–1392. https://doi.org/10.1016/J.RSER.2017.05.178
  • He, W., Li, G., Kong, L., Wang, H., Huang, J., & Xu, J. (2008). Application of hydrothermal reaction in resource recovery of organic wastes. Resources, Conservation and Recycling, 52(5), 691–699. https://doi.org/https://doi.org/10.1016/j.resconrec.2007.11.003
  • Huntley, M. E., & Redalje, D. G. (2007). CO2 Mitigation and Renewable Oil from Photosynthetic Microbes: A New Appraisal. Mitigation and Adaptation Strategies for Global Change, 12(4), 573–608. https://doi.org/10.1007/s11027-006-7304-1
  • Klass, D. L. (1998). Chapter 2 - Biomass as an Energy Resource: Concept and Markets. In D. L. Klass (Ed.), Biomass for Renewable Energy, Fuels, and Chemicals (pp. 29–50). Academic Press. https://doi.org/https://doi.org/10.1016/B978-012410950-6/50004-0
  • KOÇER, N., & Ayhan, Ü. (2007). Doğu anadolu bölgesinin biyokütle potansiyeli ve enerji üretimi. Fırat Üniversitesi Doğu Araştırmaları Dergisi, 5(2), 175–181.
  • Kumar, M., Olajire Oyedun, A., & Kumar, A. (2018). A review on the current status of various hydrothermal technologies on biomass feedstock. Renewable and Sustainable Energy Reviews, 81, 1742–1770. https://doi.org/https://doi.org/10.1016/j.rser.2017.05.270
  • Li, N., Wei, L., bibi, R., Chen, L., Liu, J., Zhang, L., Zheng, Y., & Zhou, J. (2016). Catalytic hydrogenation of alkali lignin into bio-oil using flower-like hierarchical MoS2-based composite catalysts. Fuel, 185, 532–540. https://doi.org/10.1016/J.FUEL.2016.08.001
  • Long, H., Li, X., Wang, H., & Jia, J. (2013). Biomass resources and their bioenergy potential estimation: A review. Renewable and Sustainable Energy Reviews, 26, 344–352. https://doi.org/https://doi.org/10.1016/j.rser.2013.05.035
  • Peterson, A. A., Vogel, F., Lachance, R. P., Fröling, M., Antal Jr, M. J., & Tester, J. W. (2008). Thermochemical biofuel production in hydrothermal media: a review of sub-and supercritical water technologies. Energy & Environmental Science, 1(1), 32–65. https://doi.org/10.1039/B810100K
  • Tekin, K., Karagöz, S., & Bektaş, S. (2012). Hydrothermal liquefaction of beech wood using a natural calcium borate mineral. The Journal of Supercritical Fluids, 72, 134–139. https://doi.org/https://doi.org/10.1016/j.supflu.2012.08.016
  • Toor, S. S., Rosendahl, L., & Rudolf, A. (2011). Hydrothermal liquefaction of biomass: A review of subcritical water technologies. Energy, 36(5), 2328–2342. https://doi.org/10.1016/J.ENERGY.2011.03.013
  • Wang, S., Dai, G., Yang, H., & Luo, Z. (2017). Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. Progress in Energy and Combustion Science, 62, 33–86. https://doi.org/https://doi.org/10.1016/j.pecs.2017.05.004
  • Wise, L. E., & Jahn, E. C. (1952). Wood Chemistry (Issue 1. c.). Books on Demand. https://books.google.com.tr/books?id=bErVAAAAMAAJ
  • Zhao, B., Li, H., Wang, H., Hu, Y., Gao, J., Zhao, G., Ray, M. B., & Xu, C. C. (2021). Synergistic effects of metallic Fe and other homogeneous/heterogeneous catalysts in hydrothermal liquefaction of woody biomass. Renewable Energy, 176, 543–554. https://doi.org/https://doi.org/10.1016/j.renene.2021.05.115
There are 27 citations in total.

Details

Primary Language Turkish
Subjects Chemical Reaction
Journal Section Articles
Authors

Salih Genel 0000-0003-4279-9976

Publication Date July 15, 2023
Submission Date April 8, 2023
Acceptance Date June 12, 2023
Published in Issue Year 2023 Volume: 13 Issue: 3

Cite

APA Genel, S. (2023). Biyokütlenin heterojen katalizör varlığında katalitik hidrotermal sıvılaştırma yöntemi ile sıvılaştırılması ve elde edilen ürünlerin karakterizasyonu. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(3), 675-687. https://doi.org/10.17714/gumusfenbil.1279608