Research Article
BibTex RIS Cite

Bazalt fiber kullanımının düşük plastisiteli kilin serbest basınç dayanımı üzerindeki etkisi

Year 2023, Volume: 13 Issue: 3, 688 - 701, 15.07.2023
https://doi.org/10.17714/gumusfenbil.1283148

Abstract

Düşük dayanıma sahip killerin dayanımlarını artırmak amacıyla yapılan ve stabilizasyon olarak adlandırılan güçlendirme işlemlerinde farklı katkı malzemeleri kullanılmaktadır. Bu malzemelerden en yaygın olarak kullanılanları ise fiberlerdir. Son yıllarda, maliyetlerinin düşük, dayanımlarının yüksek ve kolay ulaşılabilir olmalarından dolayı zeminlerin güçlendirilmesinde fiberlerin kullanılması, geleneksel kimyasal stabilizasyon yöntemlerine bir alternatif olarak araştırmacıların dikkatini çekmektedir. Farklı türleri olan fiberlerden bazalt fiberlerin kullanımı ekonomik ve çevreci olmaları nedeniyle artmaktadır. Bu çalışmanın amacı, bazalt fiberin kaolin kilinin dayanımı üzerindeki etkisini araştırmaktır. Farklı oranlarda (kuru ağırlıkça %0, 1, 2 ve 3) bazalt fiberin farklı su içeriklerindeki (%20, 25, 30 ve 35) zemine eklenmesiyle zeminin dayanımında meydana gelen değişimleri incelemek için serbest basınç deneyleri yapılmıştır. Deneysel çalışmalar sonrasında kile %25 oranında su ve %1 oranında bazalt fiber eklenmesi sonucu serbest basınç dayanımının maksimum olduğu belirlenmiştir. Çalışmanın sonuçlarına göre başarılı bir güçlendirmede fiber oranı ile birlikte su oranı da büyük bir etkiye sahiptir.

Supporting Institution

Fırat Üniversitesi Bilimsel Araştırma Projeleri (FÜBAP)

Project Number

MF.22.32

Thanks

MF.22.32 nolu FÜBAP projesi

References

  • Abdi, M. R., Parsapajouh, A., & Arjomand, M. A. (2008). Effects of random fiber inclusion on consolidation, hydraulic conductivity, swelling, shrinkage limit and desiccation cracking of clays. International Journal of Civil Engineering, 6(4), 284-292.
  • Ahmad, F., Bateni, F., & Azmi, M. (2010). Performance evaluation of silty sand reinforced with fibres. Geotextiles & Geomembranes, 28(1), 93-99. https://doi.org/10.1016/j.geotexmem.2009.09.017
  • Al-Bared, M. A. M., Harahap, I. S. H., Marto, A., Abad, S. V. A. N. K., & Ali, M. O. A. (2019). Undrained shear strength and microstructural characterization of treated soft soil with recycled materials. Geomechanics and Engineering, 18(4), 427-437. https://doi.org/10.12989/gae.2019.18.4.427
  • Amini, P. F., & Noorzad, R. (2018). Energy-based evaluation of liquefaction of fiber-reinforced sand using cyclic triaxial testing. Soil Dynamics and Earthquake Engineering, 104, 45-53. https://doi.org/10.1016/j.soildyn.2017.09.026
  • Aral, M. (2006). Karma lif içeren çimento esaslı kompozitlerin mekanik davranışı-bir optimum tasarım [Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü].
  • ASTM D4318-17e1, (2017). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, West Conshohocken, PA.
  • ASTM D698-12e2, (2012). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort. ASTM International, West Conshohocken, PA.
  • ASTM D2166M-16, (2016). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International, West Conshohocken, PA.
  • Bao, X., Huang, Y., Jin, Z., Xiao, X., Tang, W., Cui, H., & Chen, X. (2021). Experimental investigation on mechanical properties of clay soil reinforced with carbon fiber. Construction and Building Materials, 280, 1-9. https://doi.org/10.1016/j.conbuildmat.2021.122517
  • Basaltex (2015). The thread of stone. Retrieved from http:// www.basaltex.com
  • Behbahani, B. A., Sedaghatnezhad, H., & Changizi, F. (2016). Engineering properties of soils reinforced by recycled polyester fiber. Journal of Mechanical and Civil Engineering (IOSR-JMCE), 13(2), 01-07.
  • Botero, E., Ossa, A., Sherwell, G., & Ovando-Shelley, E. (2015). Stress-strain behavior of a silty soil reinforced with polyethylene terephthalate (PET). Geotextiles and Geomembranes, 43(4), 363-369. https://doi.org/10.1016/j.geotexmem.2015.04.003
  • Boz, A., Sezer, A., Özdemir, T., Hızal, G. E., & Azdeniz Dolmacı, O. (2018). Mechanical properties of lime-treated clay reinforced with different types of randomly distributed fibers. Arabian Journal of Geosciences, 11(122), 1-14. https://doi.org/10.1007/s12517-018-3458-x
  • Cao, Z., Ma, O., & Wang, H. (2019). Effect of basalt fiber addition on static-dynamic mechanical behaviors and microstructure of stabilized soil compositing cement and fly ash. Hindawi Advances in Civil Engineering, 1-20. https://doi.org/10.1155/2019/8214534
  • Consoli, N. C., Montardo, J. P., Prietto, P. D. M., & Pasa, G. S. (2002). Engineering behavior of a sand reinforced with plastic waste. Journal of Geotechnical and Geoenvironmental Engineering, 128(6), 462-472. 10.1061/(ASCE)1090-0241(2002)128:6(462)
  • Cui, H., Jin, Z., Bao, X., Tang, W., & Dong, B. (2018). Effect of carbon fiber and nanosilica on shear properties of silty soil and the mechanisms. Construction and Building Materials, 189, 286-295. https://doi.org/10.1016/j.conbuildmat.2018.08.181
  • Czigany, T. (2007). Discontinuous basalt fiber-reinforced hybrid composites. EXPRESS Polymer Letters, 1, 59-60.
  • Diambra, A., Ibraim, E., Wood, D. M., & Russell, A. R. (2010). Fibre reinforced sands: experiments and modeling. Geotextiles & Geomembranes, 28(3), 238-250. https://doi.org/10.1016/j.geotexmem.2009.09.010
  • Edincliler, A., & Cagatay, A. (2013). Weak subgrade improvement with rubber fibre inclusions. Geosynthetics International, 20(1), 39-46. https://doi.org/10.1680/gein.12.00038
  • Ekincioğlu, Ö. (2003). Karma lif içeren çimento esaslı kompozitlerin mekanik davranışı: Bir optimum tasarım [Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü].
  • Eskişar, T., Karakan, E., & Altun, S. (2016). Effects of fibre reinforcement on liquefaction behaviour of poorly graded sands. Procedia Engineering, 161, 538-542. https://doi.org/10.1016/j.proeng.2016.08.688
  • Estabragh, A. R., Bordbar, A. T., & Javadi, A. A. (2011). Mechanical behavior of a clay soil reinforced with nylon fibers. Geotechnical and Geological Engineering, 29(5), 899-908. https://doi.org/10.1007/s10706-011-9427-8
  • Fındıkçı, B. (2020). Bentonit kilinin cam fiber ile iyileştirilmesi [Yüksek Lisans Tezi, Kocaeli Üniversitesi Fen Bilimleri Enstitüsü].
  • Gao, L., Hu, G., Xu, N., Fu, J., Xiang, C., & Yang, C. (2015). Experimental study on unconfined compressive strength of basalt fiber reinforced clay soil. Advances in Materials Science and Engineering, 2015, 1-8. https://doi.org/10.1155/2015/561293
  • Gisymol, P. G., & Ramya, K. (2017). A study on the effect of basalt fiber in organic soil. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 14(4), 13-17.
  • Grim, R.E. (1968). Clay mineralogy. McGraw-Hill, New York.
  • Jamshaid, H., & Mishra, R. (2015). A green material from rock: basalt fiber-a review. The Journal of The Textile Institute, 107(7), 923-937. https://doi.org/10.1080/00405000.2015.1071940
  • Kenan, A., & Özocak, A. (2018). Bazalt fiber katkısının siltli zeminlerin kayma direncine etkisi. 2nd International Symposium on Natural Hazards and Disaster Management.
  • Kinjal, S., Desai, A. K., & Solanki, C. H. (2012). Experimental study on the Atterberg limits of expansive soil reinforced with polyester triangular fibers. International Journal of Engineering Research and Applications, 2(4), 636-639.
  • Lee, S., Im, J., Cho, G. C., & Chang, I. (2019). Laboratory triaxial test behavior of xanthan gum biopolymer treated sands. Geomechanics and Engineering, 17(5), 445-452. https://doi.org/10.12989/gae.2019.17.5.445
  • Liu, C., Lv, Y., Yu, X., & Wu, X. (2020). Effects of freeze-thaw cycles on the unconfined compressive strength of straw fiberreinforced soil. Geotextiles and Geomembranes, 48(4), 581-590. https://doi.org/10.1016/j.geotexmem.2020.03.004
  • Ma, Q. Y., Cao, Z. M., & Yuan, P. (2018). Experimental research on microstructure and physical-mechanical properties of expansive soil stabilized with fly ash, sand, and basalt fiber. Advances in Materials Science & Engineering, 2018, 1-13, https://doi.org/10.1155/2018/9125127
  • Motiram, P. V., Rohit, C., Tushar, K., Ayushi, C., Bhushan, G., & Deepali, C. (2018). Study of basalt fiber on compaction characteristics of black cotton soil. International Journal for Research in Engineering Application Management (IJREAM), 850-853.
  • MTA-Maden Tetkik Arama. (2023, Haziran, 5). https://www.mta.gov.tr/v3.0/sayfalar/bilgi-merkezi/maden-serisi/img/kaolen.pdf
  • Ndepete, C. P., & Sert, S. (2016). Use of basalt fibers for soil improvement. Acta Physica Polonica, 130(1), 355-356.
  • Ocakbaşı, P. (2019). Bazalt fiber katkısının killi zeminlerin drenajsız kayma direncine etkisi [Yüksek Lisans Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü].
  • Orakoglu, M. E., & Liu, J. (2017). Effect of freeze-thaw cycles on triaxial strength properties of fiber-reinforced clayey soil. KSCE Journal of Civil Engineering, 21(6), 2128-2140. https://doi.org/10.1007/s12205-017-0960-8
  • Özdemir, T., Polat, G. E., Azdeniz, O., Boz, A., & Sezer, A. (2016). Bazalt fiber ve kireç ile güçlendirilmiş kil zeminin dayanım özellikleri. Zemin Mekaniği ve Temel Mühendisliği 16. Ulusal Kongresi, 1025-1034.
  • Pandit, V. M., Rohit, C., Tushar, K., Ayushi, C., Bhushan, G., & Deepali, C. (2018). Study of basalt fiber on compaction characteristics of black cotton soil. 6th International Conference on Recent Trends in Engineering & Technology (ICRTET), 850-853.
  • Pradhan, P. K., Kar, R. K., & Naik, A. (2012). Effect of random inclusion of polypropylene fibers on strength characteristics of cohesive soil. Geotechnical and Geological Engineering, 30, 15-25. https://doi.org/10.1007/s10706-011-9445-6
  • Roustaei, M., Eslami, A. & Ghazavi, M. (2015). Effects of freeze-thaw cycles on a fiber reinforced fine grained soil in relation to geotechnical parameters. Cold Regions Science and Technology, 120, 127-137. https://doi.org/10.1016/j.coldregions.2015.09.011
  • Saravanan, D. (2006). Spinning the rocks-basalt fibers. Journal of the Institute of Engineers (India). Textile Engineering Division, 86, 39-45.
  • Seyhan, İ. (1971). Volkanik kaolin oluşumu ve andezit problemi. Maden Tetkik Arama Enstitüsü, 123-134, Ankara.
  • Soğancı, A. S. (2015). The effect of polypropylene fiber in the stabilization of expansive soils. International Journal of Geological and Environmental Engineering, 9(8), 994-997.
  • Sungur, A., Yazıcı, M. F., & Keskin, S. N. (2021). Bazalt lifi ile güçlendirilmiş killi zeminin mühendislik özellikleri üzerine deneysel araştırma. Avrupa Bilim ve Teknoloji Dergisi Özel Sayı, 28, 895-899. https://doi.org/10.31590/ejosat.1011881
  • Tang, C., Shi, B., Gao, W., Chen, F., & Cai, Y. (2007). Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles and Geomembranes, 25(3), 194-202. https://doi.org/10.1016/j.geotexmem.2006.11.002
  • Tran, K. Q., Satomi, T., & Takahashi, H. (2018). Effect of waste cornsilk fiber reinforcement on mechanical properties of soft soils. Transportation Geotechnics, 16, 76-84. https://doi.org/10.1016/j.trgeo.2018.07.003
  • Valipour, M., Shourijeh, P. T., & Mohammadina, A. (2021). Application of recycled tire polymer fibers and glass fibers for clay reinforcement. Transportation Geotechnics, 27, 1-14. https://doi.org/10.1016/j.trgeo.2020.100474
  • Wang, S., Xue, Q., Ma, W., Zhao, K., & Wu, Z. (2021). Experimental study on mechanical properties of fiber-reinforced and geopolymer-stabilized clay soil. Construction and Building Materials 272(2021), 121914. https://doi.org/10.1016/j.conbuildmat.2020.121914
  • Yetimoglu, T., & Salbas, O. (2003). A study on shear strength of sands reinforced with randomly distributed discrete fibers. Geotextiles and Geomembranes, 21(2), 103-110. https://doi.org/10.1016/S0266-1144(03)00003-7
  • Yixian, W., Panpan, G., Shengbiao, S., Haiping, Y., & Binxiang, Y. (2016). Study on strength influence mechanism of fiber-reinforced expansive soil using jute. Geotechnical and Geological Engineering, 34, 1079-1088. https://doi.org/10.1007/s10706-016-0028-4
  • Zaimoglu, A. S. (2010). Freezing-thawing behavior of fine-grained soils reinforced with polypropylene fibers. Cold Regions Science and Technology, 60(1), 63-65. https://doi.org/10.1016/j.coldregions.2009.07.001

The effect of basalt fiber use on the unconfined compressive strength of low plasticity clay

Year 2023, Volume: 13 Issue: 3, 688 - 701, 15.07.2023
https://doi.org/10.17714/gumusfenbil.1283148

Abstract

Different additives are used in reinforcement processes, called stabilization, which are made to increase the strength of low strength clays. Fibers are the most widely used of these materials. In recent years, the use of fibers in the reinforcement of soils has attracted the attention of researchers as an alternative to traditional chemical stabilization methods, due to their low cost, high strength and easy accessibility. The use of basalt fibers, which are different types of fibers, is increasing due to their economic and environmental friendliness. The aim of this study is to investigate the effect of basalt fiber on the strength of kaolin clay. In order to examine the changes in the strength of the soil by adding basalt fiber in different proportions (0, 1, 2 and 3 % by dry weight) to the soil with different water contents (20, 25, 30 and 35%), unconfined compressive tests were carried out. After the experimental studies, it was determined that the unconfined compressive strength was maximum as a result of the addition of 25% water and 1% basalt fiber to the clay. According to the results of the study, the fiber ratio and the water ratio have a great effect on a successful reinforcement.

Project Number

MF.22.32

References

  • Abdi, M. R., Parsapajouh, A., & Arjomand, M. A. (2008). Effects of random fiber inclusion on consolidation, hydraulic conductivity, swelling, shrinkage limit and desiccation cracking of clays. International Journal of Civil Engineering, 6(4), 284-292.
  • Ahmad, F., Bateni, F., & Azmi, M. (2010). Performance evaluation of silty sand reinforced with fibres. Geotextiles & Geomembranes, 28(1), 93-99. https://doi.org/10.1016/j.geotexmem.2009.09.017
  • Al-Bared, M. A. M., Harahap, I. S. H., Marto, A., Abad, S. V. A. N. K., & Ali, M. O. A. (2019). Undrained shear strength and microstructural characterization of treated soft soil with recycled materials. Geomechanics and Engineering, 18(4), 427-437. https://doi.org/10.12989/gae.2019.18.4.427
  • Amini, P. F., & Noorzad, R. (2018). Energy-based evaluation of liquefaction of fiber-reinforced sand using cyclic triaxial testing. Soil Dynamics and Earthquake Engineering, 104, 45-53. https://doi.org/10.1016/j.soildyn.2017.09.026
  • Aral, M. (2006). Karma lif içeren çimento esaslı kompozitlerin mekanik davranışı-bir optimum tasarım [Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü].
  • ASTM D4318-17e1, (2017). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, West Conshohocken, PA.
  • ASTM D698-12e2, (2012). Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort. ASTM International, West Conshohocken, PA.
  • ASTM D2166M-16, (2016). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International, West Conshohocken, PA.
  • Bao, X., Huang, Y., Jin, Z., Xiao, X., Tang, W., Cui, H., & Chen, X. (2021). Experimental investigation on mechanical properties of clay soil reinforced with carbon fiber. Construction and Building Materials, 280, 1-9. https://doi.org/10.1016/j.conbuildmat.2021.122517
  • Basaltex (2015). The thread of stone. Retrieved from http:// www.basaltex.com
  • Behbahani, B. A., Sedaghatnezhad, H., & Changizi, F. (2016). Engineering properties of soils reinforced by recycled polyester fiber. Journal of Mechanical and Civil Engineering (IOSR-JMCE), 13(2), 01-07.
  • Botero, E., Ossa, A., Sherwell, G., & Ovando-Shelley, E. (2015). Stress-strain behavior of a silty soil reinforced with polyethylene terephthalate (PET). Geotextiles and Geomembranes, 43(4), 363-369. https://doi.org/10.1016/j.geotexmem.2015.04.003
  • Boz, A., Sezer, A., Özdemir, T., Hızal, G. E., & Azdeniz Dolmacı, O. (2018). Mechanical properties of lime-treated clay reinforced with different types of randomly distributed fibers. Arabian Journal of Geosciences, 11(122), 1-14. https://doi.org/10.1007/s12517-018-3458-x
  • Cao, Z., Ma, O., & Wang, H. (2019). Effect of basalt fiber addition on static-dynamic mechanical behaviors and microstructure of stabilized soil compositing cement and fly ash. Hindawi Advances in Civil Engineering, 1-20. https://doi.org/10.1155/2019/8214534
  • Consoli, N. C., Montardo, J. P., Prietto, P. D. M., & Pasa, G. S. (2002). Engineering behavior of a sand reinforced with plastic waste. Journal of Geotechnical and Geoenvironmental Engineering, 128(6), 462-472. 10.1061/(ASCE)1090-0241(2002)128:6(462)
  • Cui, H., Jin, Z., Bao, X., Tang, W., & Dong, B. (2018). Effect of carbon fiber and nanosilica on shear properties of silty soil and the mechanisms. Construction and Building Materials, 189, 286-295. https://doi.org/10.1016/j.conbuildmat.2018.08.181
  • Czigany, T. (2007). Discontinuous basalt fiber-reinforced hybrid composites. EXPRESS Polymer Letters, 1, 59-60.
  • Diambra, A., Ibraim, E., Wood, D. M., & Russell, A. R. (2010). Fibre reinforced sands: experiments and modeling. Geotextiles & Geomembranes, 28(3), 238-250. https://doi.org/10.1016/j.geotexmem.2009.09.010
  • Edincliler, A., & Cagatay, A. (2013). Weak subgrade improvement with rubber fibre inclusions. Geosynthetics International, 20(1), 39-46. https://doi.org/10.1680/gein.12.00038
  • Ekincioğlu, Ö. (2003). Karma lif içeren çimento esaslı kompozitlerin mekanik davranışı: Bir optimum tasarım [Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü].
  • Eskişar, T., Karakan, E., & Altun, S. (2016). Effects of fibre reinforcement on liquefaction behaviour of poorly graded sands. Procedia Engineering, 161, 538-542. https://doi.org/10.1016/j.proeng.2016.08.688
  • Estabragh, A. R., Bordbar, A. T., & Javadi, A. A. (2011). Mechanical behavior of a clay soil reinforced with nylon fibers. Geotechnical and Geological Engineering, 29(5), 899-908. https://doi.org/10.1007/s10706-011-9427-8
  • Fındıkçı, B. (2020). Bentonit kilinin cam fiber ile iyileştirilmesi [Yüksek Lisans Tezi, Kocaeli Üniversitesi Fen Bilimleri Enstitüsü].
  • Gao, L., Hu, G., Xu, N., Fu, J., Xiang, C., & Yang, C. (2015). Experimental study on unconfined compressive strength of basalt fiber reinforced clay soil. Advances in Materials Science and Engineering, 2015, 1-8. https://doi.org/10.1155/2015/561293
  • Gisymol, P. G., & Ramya, K. (2017). A study on the effect of basalt fiber in organic soil. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 14(4), 13-17.
  • Grim, R.E. (1968). Clay mineralogy. McGraw-Hill, New York.
  • Jamshaid, H., & Mishra, R. (2015). A green material from rock: basalt fiber-a review. The Journal of The Textile Institute, 107(7), 923-937. https://doi.org/10.1080/00405000.2015.1071940
  • Kenan, A., & Özocak, A. (2018). Bazalt fiber katkısının siltli zeminlerin kayma direncine etkisi. 2nd International Symposium on Natural Hazards and Disaster Management.
  • Kinjal, S., Desai, A. K., & Solanki, C. H. (2012). Experimental study on the Atterberg limits of expansive soil reinforced with polyester triangular fibers. International Journal of Engineering Research and Applications, 2(4), 636-639.
  • Lee, S., Im, J., Cho, G. C., & Chang, I. (2019). Laboratory triaxial test behavior of xanthan gum biopolymer treated sands. Geomechanics and Engineering, 17(5), 445-452. https://doi.org/10.12989/gae.2019.17.5.445
  • Liu, C., Lv, Y., Yu, X., & Wu, X. (2020). Effects of freeze-thaw cycles on the unconfined compressive strength of straw fiberreinforced soil. Geotextiles and Geomembranes, 48(4), 581-590. https://doi.org/10.1016/j.geotexmem.2020.03.004
  • Ma, Q. Y., Cao, Z. M., & Yuan, P. (2018). Experimental research on microstructure and physical-mechanical properties of expansive soil stabilized with fly ash, sand, and basalt fiber. Advances in Materials Science & Engineering, 2018, 1-13, https://doi.org/10.1155/2018/9125127
  • Motiram, P. V., Rohit, C., Tushar, K., Ayushi, C., Bhushan, G., & Deepali, C. (2018). Study of basalt fiber on compaction characteristics of black cotton soil. International Journal for Research in Engineering Application Management (IJREAM), 850-853.
  • MTA-Maden Tetkik Arama. (2023, Haziran, 5). https://www.mta.gov.tr/v3.0/sayfalar/bilgi-merkezi/maden-serisi/img/kaolen.pdf
  • Ndepete, C. P., & Sert, S. (2016). Use of basalt fibers for soil improvement. Acta Physica Polonica, 130(1), 355-356.
  • Ocakbaşı, P. (2019). Bazalt fiber katkısının killi zeminlerin drenajsız kayma direncine etkisi [Yüksek Lisans Tezi, Sakarya Üniversitesi Fen Bilimleri Enstitüsü].
  • Orakoglu, M. E., & Liu, J. (2017). Effect of freeze-thaw cycles on triaxial strength properties of fiber-reinforced clayey soil. KSCE Journal of Civil Engineering, 21(6), 2128-2140. https://doi.org/10.1007/s12205-017-0960-8
  • Özdemir, T., Polat, G. E., Azdeniz, O., Boz, A., & Sezer, A. (2016). Bazalt fiber ve kireç ile güçlendirilmiş kil zeminin dayanım özellikleri. Zemin Mekaniği ve Temel Mühendisliği 16. Ulusal Kongresi, 1025-1034.
  • Pandit, V. M., Rohit, C., Tushar, K., Ayushi, C., Bhushan, G., & Deepali, C. (2018). Study of basalt fiber on compaction characteristics of black cotton soil. 6th International Conference on Recent Trends in Engineering & Technology (ICRTET), 850-853.
  • Pradhan, P. K., Kar, R. K., & Naik, A. (2012). Effect of random inclusion of polypropylene fibers on strength characteristics of cohesive soil. Geotechnical and Geological Engineering, 30, 15-25. https://doi.org/10.1007/s10706-011-9445-6
  • Roustaei, M., Eslami, A. & Ghazavi, M. (2015). Effects of freeze-thaw cycles on a fiber reinforced fine grained soil in relation to geotechnical parameters. Cold Regions Science and Technology, 120, 127-137. https://doi.org/10.1016/j.coldregions.2015.09.011
  • Saravanan, D. (2006). Spinning the rocks-basalt fibers. Journal of the Institute of Engineers (India). Textile Engineering Division, 86, 39-45.
  • Seyhan, İ. (1971). Volkanik kaolin oluşumu ve andezit problemi. Maden Tetkik Arama Enstitüsü, 123-134, Ankara.
  • Soğancı, A. S. (2015). The effect of polypropylene fiber in the stabilization of expansive soils. International Journal of Geological and Environmental Engineering, 9(8), 994-997.
  • Sungur, A., Yazıcı, M. F., & Keskin, S. N. (2021). Bazalt lifi ile güçlendirilmiş killi zeminin mühendislik özellikleri üzerine deneysel araştırma. Avrupa Bilim ve Teknoloji Dergisi Özel Sayı, 28, 895-899. https://doi.org/10.31590/ejosat.1011881
  • Tang, C., Shi, B., Gao, W., Chen, F., & Cai, Y. (2007). Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles and Geomembranes, 25(3), 194-202. https://doi.org/10.1016/j.geotexmem.2006.11.002
  • Tran, K. Q., Satomi, T., & Takahashi, H. (2018). Effect of waste cornsilk fiber reinforcement on mechanical properties of soft soils. Transportation Geotechnics, 16, 76-84. https://doi.org/10.1016/j.trgeo.2018.07.003
  • Valipour, M., Shourijeh, P. T., & Mohammadina, A. (2021). Application of recycled tire polymer fibers and glass fibers for clay reinforcement. Transportation Geotechnics, 27, 1-14. https://doi.org/10.1016/j.trgeo.2020.100474
  • Wang, S., Xue, Q., Ma, W., Zhao, K., & Wu, Z. (2021). Experimental study on mechanical properties of fiber-reinforced and geopolymer-stabilized clay soil. Construction and Building Materials 272(2021), 121914. https://doi.org/10.1016/j.conbuildmat.2020.121914
  • Yetimoglu, T., & Salbas, O. (2003). A study on shear strength of sands reinforced with randomly distributed discrete fibers. Geotextiles and Geomembranes, 21(2), 103-110. https://doi.org/10.1016/S0266-1144(03)00003-7
  • Yixian, W., Panpan, G., Shengbiao, S., Haiping, Y., & Binxiang, Y. (2016). Study on strength influence mechanism of fiber-reinforced expansive soil using jute. Geotechnical and Geological Engineering, 34, 1079-1088. https://doi.org/10.1007/s10706-016-0028-4
  • Zaimoglu, A. S. (2010). Freezing-thawing behavior of fine-grained soils reinforced with polypropylene fibers. Cold Regions Science and Technology, 60(1), 63-65. https://doi.org/10.1016/j.coldregions.2009.07.001
There are 52 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Zülfü Gürocak 0000-0002-1049-8346

Yasemin Aslan Topçuoğlu 0000-0002-3135-5926

Project Number MF.22.32
Publication Date July 15, 2023
Submission Date April 14, 2023
Acceptance Date June 13, 2023
Published in Issue Year 2023 Volume: 13 Issue: 3

Cite

APA Gürocak, Z., & Aslan Topçuoğlu, Y. (2023). Bazalt fiber kullanımının düşük plastisiteli kilin serbest basınç dayanımı üzerindeki etkisi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(3), 688-701. https://doi.org/10.17714/gumusfenbil.1283148