Research Article
BibTex RIS Cite

Balıkesir il merkezinde PM10 seviyelerinin COVID-19 pandemi sürecinde analiz edilmesi

Year 2023, Volume: 13 Issue: 4, 810 - 821, 15.10.2023
https://doi.org/10.17714/gumusfenbil.1162562

Abstract

Bu çalışmada, Balıkesir kent merkezinde partikül madde (PM10) seviyelerinin pandemi dönemini kapsayan 2019 ile 2021 yılları arasında değişimleri istatiksel ve mekânsal olarak analiz edilmiştir. Sürekli ölçülen PM10 ve meteorolojik parametrelerin analizleri sonucunda pandemi dönemine denk gelen 2021 yılı PM10 seviyelerinin en yüksek olduğu zaman dilimi olarak kayıtlara geçmiştir. Özellikle, 2020 ve 2021 yıllarında yasal limit aşımı gözlemlenen gün sayıları yıl içerisinde üç basamaklı sayılar seviyesinde ifade edilmiştir. Konsantrasyon ağırlıklı yörünge (CWT) analizi sonucunda, en yüksek günlük PM10 seviyesinin ölçüldüğü gün olan 21.Ocak.2021 tarihinde Balıkesir il merkezi için etkili olan kaynakların lokal kaynaklardan çok Kuzey Afrika çöl tozlarının etkisinde kıtasal taşınımların olduğu tespit edilmiştir. Küme analizleri sonucunda ise, ölçülen yüksek konsantrasyonlu PM10 seviyelerinin lokal kaynaklardan çok kıtasal taşınımların rol oynadığı özellikle Akdeniz üzerinden Kuzey Afrika çöl bölgelerinden gelen çöl tozlarının etkili olduğu tespit edilmiştir. Ayrıca, yine küme analizleri sonucunda, küçümsenemeyecek oranda Doğu Avrupa üzerinden de özelikle Bulgaristan’ın güney doğu bölümünde kömür yakmalı termik santrallerin yoğun olarak bulunduğu yerlerden taşınımların olduğu da düşünülmektedir.

Thanks

Bu çalışmanın yapılmasında önemli yer tutan verilerin sağlanmasında desteklerini esirgemeyen Balıkesir Valiliği Çevre, Şehircilik ve İklim Değişikliği İl Müdürlüğü ve ayrıca Balıkesir Valiliği Meteoroloji İl Müdürlüğü yetkilerine teşekkürlerimi sunarım.

References

  • Ansari, M., & Ehrampoush, M. H. (2019). Meteorological correlates and AirQ+ health risk assessment of ambient fine particulate matter in Tehran, Iran. Environmental Research, 170, 141-150. https://doi.org/10.1016/j.envres.2018.11.046
  • Balcılar, İ. (2018). Chemical composition of atmospheric particles as a tool to identify sources affecting aerosol population in the eastern black sea atmosphere [Doktora Tezi, Ortadoğu Teknik Üniversitesi Fen Bilimleri Enstitüsü].
  • Canpolat, E., Dinç, Y., Usun, Ç. F., & Geçen, R. (2020). 25.09.2014 tarihinde Erzin Ilıcalarda (Hatay) meydana gelen sel ve taşkının oluşumunda coğrafi faktörlerin değerlendirilmesi. Coğrafya Dergisi, 41, 129-146. https://doi.org/10.26650/JGEOG2020-0048
  • Çapraz, Ö., Deniz, A., & Doğan, N. (2017). Effects of air pollution on respiratory hospital admissions in İstanbul, Turkey, 2013 to 2015. Chemosphere, 181, 544-550. https://doi.org/10.1016/j.chemosphere.2017.04.105
  • Carslaw, D. C., & Ropkins, K. (2012). Openair — an R package for air quality data analysis. Environmental Modelling & Software, 27, 52-61. https://doi.org/10.1016/j.envsoft.2011.09.008
  • Carslaw, D. C. (2015). The open-air manual — open-source tools for analyzing air pollution data. Manual for version 1.1-4. King’s College London, United Kingdom. https://technodocbox.com/C_and_CPP/68023243-The-openair-manual-open-source-tools-for-analysing-air-pollution-data.html.
  • Chang, Q., Zhang, H., & Zhao, Y. (2020). Ambient air pollution and daily hospital admissions for respiratory system–related diseases in a heavy polluted city in Northeast China. Environmental Science and Pollution Research, 27, 10055-10064. https://doi.org/10.1007/s11356-020-07678-8
  • Conticini, E., Frediani, B., & Caro, D. (2020). Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy?. Environmental Pollution, 261, 114465. https://doi.org/10.1016/j.envpol.2020.114465
  • Debone, D., da Costa, M. V., & Miraglia, S. G. (2020). 90 days of COVID-19 social distancing and its impacts on air quality and health in Sao Paulo, Brazil. Sustainability, 12, 7440.
  • Dumka, U. C., Tiwari, S., Kaskaoutis, D. G., Soni, V. K., Safai, P. D., & Attri, S. D. (2019). Aerosol and pollutant characteristics in Delhi during a winter research campaign. Environmental Science and Pollution Research International, 26(4), 3771-3794. https://doi.org/10.1007/s11356-018-3885-y
  • Durmuş, O. (2016). 24 Ağustos 2015 tarihinde Hopa’da ani taşkına neden olan aşırı yağış hadisesinin meteorolojik analizi ve bulut dinamik yapılarının incelenmesi [Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü].
  • EEA, European Environment Agency. (2020). COVID-19 and Europe’s environment: impacts of a global pandemic. (2023, 9 Haziran). https://doi.org/10.2800/626706.
  • EEA, European Environment Agency. (2021). Air quality in Europe 2021. (2023, 9 Haziran). https://doi.org/10.2800/549289.
  • EEA, European Environment Agency. (2023). Air quality and Covid-19. (2023, 9 Haziran). https://www.eea.europa.eu/signals/themes/air/air-quality-and-covid19/air-quality-and-covid19.
  • HKDYY, Hava Kalitesi Değerlendirme ve Yönetimi Yönetmeliği. (2008). Hava kalitesi değerlendirme ve yönetimi yönetmeliği. T.C. Resmi Gazete (26898, 06 Haziran 2008).
  • IBM-SPSS. (2016). IBM Corp. Released 2016. IBM SPSS Statistics for Windows, Version 24.0.
  • Li, L., Li, Q., Huang, L., Wang, Q., Zhu, A., Xu, J., Liu, Z., Li, H., Shi, L., Li, R., Azari, M., Wang, Y., Zhang, X., Liu, Z., Zhu, Y., Zhang, K., Xue, S., Ooi, M. C. G., Zhang, D., & Chan, A. (2020). Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation. The Science of The Total Environment, 732, 139282. https://doi.org/10.1016/j.scitotenv.2020.139282
  • Mutlu, A. (2019). Hava kalitesi ve meteoroloji: korelasyon, trend ve epizot analizleri. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(4), 724-741. https://doi.org/10.17714/gumusfenbil.563848
  • NOAA, National Oceanic and Atmospheric Administration. (2021). HYSPLIT Description. (2023, 9 Haziran). https://www.arl.noaa.gov/hysplit/hysplit/
  • Oğuz, K., Oğuz, E., & Çamalan, G. (2021). İzmir-Tırazlı orman yangınının uydu ve model verileri ile analizi. Ulusal Çevre Bilimleri Araştırma Dergisi, 4(1), 1-12. https://dergipark.org.tr/tr/download/article-file/1275815
  • Pandolfi, M., Mooibroek, D., Hopke, P., van Pinxteren, D., Querol, X., Herrmann, H., Alastuey, A., Favez, O., Hüglin, C., Perdrix, E., Riffault, V., Sauvage, S., van der Swaluw, E., Tarasova, O., & Colette, A. (2020). Long-range and local air pollution: what can we learn from chemical speciation of particulate matter at paired sites?. Atmospheric Chemistry and Physics, 20, 409-429. https://doi.org/10.5194/acp-20-409-2020
  • Seo, J. H., Kim, J. S., Yang, J., Yun, H., Roh, M., Kim, J. W., Yu, S., Jeong, N. N., Jeon, H. W., Choi, J. S., & Sohn, J. R. (2020). Changes in air quality during the covid-19 pandemic and associated health benefits in Korea. Applied Sciences, 10(23), 8720. https://doi.org/10.3390/app10238720
  • Sciomer, S., Moscucci, F., Magrì, D., Badagliacca, R., Piccirillo, G., & Agostoni, P. (2020). SARS-CoV-2 spread in Northern Italy: what about the pollution role?. Environmental Monitoring and Assessment, 192(6), 325. https://doi.org/10.1007/s10661-020-08317-y
  • Sharma, S., Zhang, M., Gao, J., Zhang, H., & Kota, S. H. (2020). Effect of restricted emissions during COVID-19 on air quality in India. The Science of The Total Environment, 728, 138878.
  • Szulecka, A., Oleniacz, R., & Rzeszutek, M. (2017). Functionality of openair package in air pollution assessment and modeling - A case study of Krakow. Environmental Protection and Natural Resources, 28, 22-27. https://doi.org/10.1515 /oszn-2017-0009
  • THEP, Temiz Hava Eylem Planı. (2019). Temiz Hava Eylem Planı: 2013-2019. Balikesir Çevre ve Şehircilik İl Müdürlüğü, T.C. Çevre ve Şehircilik Bakanlığı. (2023, 9 Haziran). https://webdosya.csb.gov.tr/db/balikesir/menu/2015-2019-balikesir-temiz-hava-eylem-plani_20190927112216.pdf.
  • TÜİK, Türkiye İstatistik Kurumu. (2021). Adrese dayalı nüfus kayıt istatististikleri. (2023, 9 Haziran) https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2020-37210.
  • WHO, World Health Organization. (2021). Global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Geneva, Switzerland.
  • Wang, Y.Q., Zhang, X. Y., & Draxler, R. (2009). TrajStat: gis-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environmental Modelling & Software, 24, 938-939.
  • Xu, K., Cui, K., Young, L. H., Wang, Y. F., Hsieh, Y. K., Wan, S., & Zhang, J. (2020). Air quality index, indicatory air pollutants and impact of COVID-19 event on the air quality near central China. Aerosol and Air Quality Reserach, 20, 1204-1221.
  • Yang, J., Zheng, Y., Gou, X., Pu, K., Chen, Z., Guo, Q., Ji, R., Wang, H., Wang, Y., & Zhou, Y. (2020). Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. International Journal of Infectious Diseases, 94, 91-95. https://doi.org/10.1016/j.ijid.2020.03.017
  • Yıkmaz, R. F. (2010). Development of gis based trajectory statistical analysis method to identify potential sources of regional air pollution [Yüksek Lisans Tezi, Ortadoğu Teknik Üniversitesi Fen Bilimleri Enstitüsü].
  • Zhou, H., Wang, T., Zhou, F., Liu, Y., Zhao, W., Wang, X., Chen, H., & Cui, Y. (2019). Ambient air pollution and daily hospital admissions for respiratory disease in children in Guiyang, China. Frontiers in Pediatrics, 7, 400. https://doi.org/10.3389/fped.2019.00400

Analysis of PM10 levels in downtown Balikesir during the COVID-19 pandemic

Year 2023, Volume: 13 Issue: 4, 810 - 821, 15.10.2023
https://doi.org/10.17714/gumusfenbil.1162562

Abstract

In this study, the changes in particulate matter (PM10) levels in dowtown Balıkesir, located in the south of the Marmara region, were examined with statistical and spatial analyzes between 2019 and 2021 of the the pandemic period. As a result of the analysis of PM10 and meteorological parameters that were continuously measured in Balıkesir, the year of 2021 which coincides with the middle of the pandemic period, has beed recorded as the time period with the highest PM10 levels were observed. Especially, the number of days that exceeded the legal limit in 2020 and 2021 were reported as three-digit numbers throughout the years. As a result of concentration-weighted trajectory (CWT) analysis, North African desert dust rather than local sources that were more effective for Balıkesir downtown when the highest daily PM10 level was measured on January 21st, 2021. As a result of the cluster analysis, it was determined that the high concentration PM10 levels measured, as in the CWT analyzes, were influenced by continental transport rather than local sources, especially the desert dusts coming from the desert regions of North Africa over the Mediterranean Sea. In addition, as a result of the cluster analysis, it has been determined that there are transports from Eastern Europe, especially in the southeastern part of Bulgaria, from places where coal-fired thermal power plants are densely located.

References

  • Ansari, M., & Ehrampoush, M. H. (2019). Meteorological correlates and AirQ+ health risk assessment of ambient fine particulate matter in Tehran, Iran. Environmental Research, 170, 141-150. https://doi.org/10.1016/j.envres.2018.11.046
  • Balcılar, İ. (2018). Chemical composition of atmospheric particles as a tool to identify sources affecting aerosol population in the eastern black sea atmosphere [Doktora Tezi, Ortadoğu Teknik Üniversitesi Fen Bilimleri Enstitüsü].
  • Canpolat, E., Dinç, Y., Usun, Ç. F., & Geçen, R. (2020). 25.09.2014 tarihinde Erzin Ilıcalarda (Hatay) meydana gelen sel ve taşkının oluşumunda coğrafi faktörlerin değerlendirilmesi. Coğrafya Dergisi, 41, 129-146. https://doi.org/10.26650/JGEOG2020-0048
  • Çapraz, Ö., Deniz, A., & Doğan, N. (2017). Effects of air pollution on respiratory hospital admissions in İstanbul, Turkey, 2013 to 2015. Chemosphere, 181, 544-550. https://doi.org/10.1016/j.chemosphere.2017.04.105
  • Carslaw, D. C., & Ropkins, K. (2012). Openair — an R package for air quality data analysis. Environmental Modelling & Software, 27, 52-61. https://doi.org/10.1016/j.envsoft.2011.09.008
  • Carslaw, D. C. (2015). The open-air manual — open-source tools for analyzing air pollution data. Manual for version 1.1-4. King’s College London, United Kingdom. https://technodocbox.com/C_and_CPP/68023243-The-openair-manual-open-source-tools-for-analysing-air-pollution-data.html.
  • Chang, Q., Zhang, H., & Zhao, Y. (2020). Ambient air pollution and daily hospital admissions for respiratory system–related diseases in a heavy polluted city in Northeast China. Environmental Science and Pollution Research, 27, 10055-10064. https://doi.org/10.1007/s11356-020-07678-8
  • Conticini, E., Frediani, B., & Caro, D. (2020). Can atmospheric pollution be considered a co-factor in extremely high level of SARS-CoV-2 lethality in Northern Italy?. Environmental Pollution, 261, 114465. https://doi.org/10.1016/j.envpol.2020.114465
  • Debone, D., da Costa, M. V., & Miraglia, S. G. (2020). 90 days of COVID-19 social distancing and its impacts on air quality and health in Sao Paulo, Brazil. Sustainability, 12, 7440.
  • Dumka, U. C., Tiwari, S., Kaskaoutis, D. G., Soni, V. K., Safai, P. D., & Attri, S. D. (2019). Aerosol and pollutant characteristics in Delhi during a winter research campaign. Environmental Science and Pollution Research International, 26(4), 3771-3794. https://doi.org/10.1007/s11356-018-3885-y
  • Durmuş, O. (2016). 24 Ağustos 2015 tarihinde Hopa’da ani taşkına neden olan aşırı yağış hadisesinin meteorolojik analizi ve bulut dinamik yapılarının incelenmesi [Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü].
  • EEA, European Environment Agency. (2020). COVID-19 and Europe’s environment: impacts of a global pandemic. (2023, 9 Haziran). https://doi.org/10.2800/626706.
  • EEA, European Environment Agency. (2021). Air quality in Europe 2021. (2023, 9 Haziran). https://doi.org/10.2800/549289.
  • EEA, European Environment Agency. (2023). Air quality and Covid-19. (2023, 9 Haziran). https://www.eea.europa.eu/signals/themes/air/air-quality-and-covid19/air-quality-and-covid19.
  • HKDYY, Hava Kalitesi Değerlendirme ve Yönetimi Yönetmeliği. (2008). Hava kalitesi değerlendirme ve yönetimi yönetmeliği. T.C. Resmi Gazete (26898, 06 Haziran 2008).
  • IBM-SPSS. (2016). IBM Corp. Released 2016. IBM SPSS Statistics for Windows, Version 24.0.
  • Li, L., Li, Q., Huang, L., Wang, Q., Zhu, A., Xu, J., Liu, Z., Li, H., Shi, L., Li, R., Azari, M., Wang, Y., Zhang, X., Liu, Z., Zhu, Y., Zhang, K., Xue, S., Ooi, M. C. G., Zhang, D., & Chan, A. (2020). Air quality changes during the COVID-19 lockdown over the Yangtze River Delta Region: An insight into the impact of human activity pattern changes on air pollution variation. The Science of The Total Environment, 732, 139282. https://doi.org/10.1016/j.scitotenv.2020.139282
  • Mutlu, A. (2019). Hava kalitesi ve meteoroloji: korelasyon, trend ve epizot analizleri. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 9(4), 724-741. https://doi.org/10.17714/gumusfenbil.563848
  • NOAA, National Oceanic and Atmospheric Administration. (2021). HYSPLIT Description. (2023, 9 Haziran). https://www.arl.noaa.gov/hysplit/hysplit/
  • Oğuz, K., Oğuz, E., & Çamalan, G. (2021). İzmir-Tırazlı orman yangınının uydu ve model verileri ile analizi. Ulusal Çevre Bilimleri Araştırma Dergisi, 4(1), 1-12. https://dergipark.org.tr/tr/download/article-file/1275815
  • Pandolfi, M., Mooibroek, D., Hopke, P., van Pinxteren, D., Querol, X., Herrmann, H., Alastuey, A., Favez, O., Hüglin, C., Perdrix, E., Riffault, V., Sauvage, S., van der Swaluw, E., Tarasova, O., & Colette, A. (2020). Long-range and local air pollution: what can we learn from chemical speciation of particulate matter at paired sites?. Atmospheric Chemistry and Physics, 20, 409-429. https://doi.org/10.5194/acp-20-409-2020
  • Seo, J. H., Kim, J. S., Yang, J., Yun, H., Roh, M., Kim, J. W., Yu, S., Jeong, N. N., Jeon, H. W., Choi, J. S., & Sohn, J. R. (2020). Changes in air quality during the covid-19 pandemic and associated health benefits in Korea. Applied Sciences, 10(23), 8720. https://doi.org/10.3390/app10238720
  • Sciomer, S., Moscucci, F., Magrì, D., Badagliacca, R., Piccirillo, G., & Agostoni, P. (2020). SARS-CoV-2 spread in Northern Italy: what about the pollution role?. Environmental Monitoring and Assessment, 192(6), 325. https://doi.org/10.1007/s10661-020-08317-y
  • Sharma, S., Zhang, M., Gao, J., Zhang, H., & Kota, S. H. (2020). Effect of restricted emissions during COVID-19 on air quality in India. The Science of The Total Environment, 728, 138878.
  • Szulecka, A., Oleniacz, R., & Rzeszutek, M. (2017). Functionality of openair package in air pollution assessment and modeling - A case study of Krakow. Environmental Protection and Natural Resources, 28, 22-27. https://doi.org/10.1515 /oszn-2017-0009
  • THEP, Temiz Hava Eylem Planı. (2019). Temiz Hava Eylem Planı: 2013-2019. Balikesir Çevre ve Şehircilik İl Müdürlüğü, T.C. Çevre ve Şehircilik Bakanlığı. (2023, 9 Haziran). https://webdosya.csb.gov.tr/db/balikesir/menu/2015-2019-balikesir-temiz-hava-eylem-plani_20190927112216.pdf.
  • TÜİK, Türkiye İstatistik Kurumu. (2021). Adrese dayalı nüfus kayıt istatististikleri. (2023, 9 Haziran) https://data.tuik.gov.tr/Bulten/Index?p=Adrese-Dayali-Nufus-Kayit-Sistemi-Sonuclari-2020-37210.
  • WHO, World Health Organization. (2021). Global air quality guidelines. Particulate matter (PM2.5 and PM10), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. Geneva, Switzerland.
  • Wang, Y.Q., Zhang, X. Y., & Draxler, R. (2009). TrajStat: gis-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environmental Modelling & Software, 24, 938-939.
  • Xu, K., Cui, K., Young, L. H., Wang, Y. F., Hsieh, Y. K., Wan, S., & Zhang, J. (2020). Air quality index, indicatory air pollutants and impact of COVID-19 event on the air quality near central China. Aerosol and Air Quality Reserach, 20, 1204-1221.
  • Yang, J., Zheng, Y., Gou, X., Pu, K., Chen, Z., Guo, Q., Ji, R., Wang, H., Wang, Y., & Zhou, Y. (2020). Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: a systematic review and meta-analysis. International Journal of Infectious Diseases, 94, 91-95. https://doi.org/10.1016/j.ijid.2020.03.017
  • Yıkmaz, R. F. (2010). Development of gis based trajectory statistical analysis method to identify potential sources of regional air pollution [Yüksek Lisans Tezi, Ortadoğu Teknik Üniversitesi Fen Bilimleri Enstitüsü].
  • Zhou, H., Wang, T., Zhou, F., Liu, Y., Zhao, W., Wang, X., Chen, H., & Cui, Y. (2019). Ambient air pollution and daily hospital admissions for respiratory disease in children in Guiyang, China. Frontiers in Pediatrics, 7, 400. https://doi.org/10.3389/fped.2019.00400
There are 33 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Atilla Mutlu 0000-0002-0777-0863

Publication Date October 15, 2023
Submission Date August 15, 2022
Acceptance Date July 25, 2023
Published in Issue Year 2023 Volume: 13 Issue: 4

Cite

APA Mutlu, A. (2023). Balıkesir il merkezinde PM10 seviyelerinin COVID-19 pandemi sürecinde analiz edilmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(4), 810-821. https://doi.org/10.17714/gumusfenbil.1162562