Research Article
BibTex RIS Cite

Effects on the strength of epoxy resin applied to the concrete surface by vacuum method

Year 2024, Volume: 14 Issue: 2, 464 - 478, 15.06.2024
https://doi.org/10.17714/gumusfenbil.1282583

Abstract

In study, epoxy resin was applied to the carbon fiber fabric wrapped concrete surface using the vacuum infusion method, which is a composite production technique. In addition, the cross-link ratio of the epoxy resin applied on concrete was optimized based on the amount of catalyst (hardener) and the effects of vacuum and brushing application on concrete strength were compared. Therefore, epoxy resin with 5:2, 2:1 and 5:3 epoxy/catalyst ratio by weight was applied to carbon fiber fabric wrapped cylindrical samples with a diameter of 150 mm and a height of 300 mm, obtained from C30 class standard concrete, in separate ways with the help of vacuum and brush. The obtained samples were tested for compressive strength and after fracture, the samples were also examined under a microscope. It is known that the resin/concrete interface is strengthened with the vacuum infusion technique. As a result of the tests, it was understood that coating with epoxy increased the strength of the concrete, but the samples applied with epoxy by brush showed a higher compressive strength than the samples coated with vacuum infusion. However, it has been observed that the compressive strength of samples coated with the vacuum infusion technique increases in proportion to the amount of catalyst applied, while in the traditional technique the strength decreases inversely proportional to the amount of catalyst. Accordingly, while the strength increased in the vacuum technique with the hardened resin, the strength decreased in the manual application technique. It has been observed that the plastic deformation behavior of concrete samples coated with vacuum infusion technique increases under load and that the concrete exhibits a more predictable engineering material behavior with the increasing amount of catalyst in resin. It has been concluded that, unlike the brittle nature of concrete under pressure, its increased plastic deformation potential will provide an advantage in its use in earthquake zones, bridges, schools and other structures requiring strength.

Project Number

Proje no: FYL-2020-10477

References

  • Agwa, M. A., Youssef, S. M., Ali-Eldin, S. S., & Megahed, M. (2022). Integrated vacuum assisted resin infusion and resin transfer molding technique for manufacturing of nano-filled glass fiber reinforced epoxy composite. Journal of Industrial Textiles, 51(3), 5113S-5144S. https://doi.org/10.1177/1528083720932337
  • Almusallam, A. A., Khan, F. M., Dulaijan, S. U., & Al-Amoudi, O. S. B. (2003). Effectiveness of surface coatings in improving concrete durability. Cement and Concrete Composites, 25(4-5 SPEC), 473–481. https://doi.org/10.1016/S0958-9465(02)00087-2
  • Baltazar, L., Santana, J., Lopes, B., Paula Rodrigues, M., & Correia, J. R. (2014). Surface skin protection of concrete with silicate-based impregnations: Influence of the substrate roughness and moisture. Construction and Building Materials, 70, 191–200. https://doi.org/10.1016/j.conbuildmat.2014.07.071
  • Berndt, M. L. (2011). Evaluation of coatings, mortars and mix design for protection of concrete against sulphur oxidising bacteria. Construction and Building Materials, 25(10), 3893–3902. https://doi.org/10.1016/j.conbuildmat.2011.04.014
  • Bertolini, L., Elsener, B., Pedeferri, P., Polder, R. B. (2013). Corrosion of Steel in Concrete:Prevention, diagnosis repair. Wiley, 414.
  • Bin, X., Su, X., Feng, H., Xuefeng, L., Bo, W., Long, Y., Meijun, H., Hongjun, Y., N. Z. (2019). Resin concrete anti-cracking structure and implement thereof.
  • Blaga a., B. J. J. (1985). Polymer Modified Concrete - NRC-IRC. In Government of Canada, National Research Council Canada, Institute for Research in Construction.
  • C.M. Hansson, L. Mammoliti, and B. B. H. (1998). Corrosion Inhibitors in Concrete—Part I: The Principles. Cement and Concrete Research, 28(October), 1775–1781.
  • Dang, Y., Xie, N., Kessel, A., McVey, E., Pace, A., & Shi, X. (2014). Accelerated laboratory evaluation of surface treatments for protecting concrete bridge decks from salt scaling. Construction and Building Materials, 55, 128–135. https://doi.org/10.1016/j.conbuildmat.2014.01.014
  • Delucchi, M., Barbucci, A., & Cerisola, G. (1997). Study of the physico-chemical properties of organic coatings for concrete degradation control. Construction and Building Materials, 11(7–8), 365–371. https://doi.org/10.1016/S0950-0618(97)00060-3
  • Diamanti, M. V., Brenna, A., Bolzoni, F., Berra, M., Pastore, T., & Ormellese, M. (2013). Effect of polymer modified cementitious coatings on water and chloride permeability in concrete. Construction and Building Materials, 49, 720–728. https://doi.org/10.1016/j.conbuildmat.2013.08.050
  • Doǧangün, A. (2004). Performance of reinforced concrete buildings during the May 1, 2003 Bingöl Earthquake in Turkey. Engineering Structures, 26(6), 841–856. https://doi.org/10.1016/j.engstruct.2004.02.005
  • Drozdov, A. D., De, J., Gupta, R. K., & Shah, A. P. (2003). Model for anomalous moisture diffusion through a polymer-clay nanocomposite. Journal of Polymer Science, Part B: Polymer Physics, 41(5), 476–492. https://doi.org/10.1002/polb.10393
  • Elalaoui, O., Ghorbel, E., Mignot, V., & Ben Ouezdou, M. (2012). Mechanical and physical properties of epoxy polymer concrete after exposure to temperatures up to 250 °c. Construction and Building Materials, 27(1), 415–424. https://doi.org/10.1016/j.conbuildmat.2011.07.027
  • Fick, A. (1855). Ueber Diffusion. Annalen Der Physik, 170(1), 59–86. https://doi.org/10.1002/ANDP.18551700105
  • Franzoni, E., Pigino, B., & Pistolesi, C. (2013). Ethyl silicate for surface protection of concrete: Performance in comparison with other inorganic surface treatments. Cement and Concrete Composites, 44, 69–76. https://doi.org/10.1016/j.cemconcomp.2013.05.008
  • Franzoni, E., Varum, H., Natali, M. E., Bignozzi, M. C., Melo, J., Rocha, L., & Pereira, E. (2014). Improvement of historic reinforced concrete/mortars by impregnation and electrochemical methods. Cement and Concrete Composites, 49, 50–58. https://doi.org/10.1016/j.cemconcomp.2013.12.013
  • Hinder, S. J., Lowe, C., Maxted, J. T., Perruchot, C., & Watts, J. F. (2005). Intercoat adhesion failure in a multilayer organic coating system: An X-ray photoelectron spectroscopy study. Progress in Organic Coatings, 54(1), 20–27. https://doi.org/10.1016/j.porgcoat.2005.03.012
  • Ilki, A., Celeb, Z. (1997). Earthquakes, existing buildings and seismic design codes in turkey. Arabian Journal for Science and Engineering, 37, 365–380.
  • İşleyen, Ü. K., Ghoroubi, R., Mercimek, Ö., Anil, Ö., & Erdem, R. T. (2021). Behavior of glulam timber beam strengthened with carbon fiber reinforced polymer strip for flexural loading. Journal of Reinforced Plastics and Composites, 40(17–18), 665–685. https://doi.org/10.1177/0731684421997924/ASSET/IMAGES/LARGE/10.1177_0731684421997924-FIG13.JPEG
  • Kuru Mutlu, H. (2022). Applied research into muttalip clay in Eskişehir. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler, 10(1), 27–34.
  • Liu, J., & Vipulanandan, C. (2001). Evaluating a polymer concrete coating for protecting non-metallic underground facilities from sulfuric acid attack. Tunnelling and Underground Space Technology, 16(4), 311–321. https://doi.org/10.1016/S0886-7798(01)00053-0
  • Maggana, C., & Pissis, P. (1999). Water sorption and diffusion studies in an epoxy resin system. Journal of Polymer Science, Part B: Polymer Physics, 37(11), 1165–1182. https://doi.org/10.1002/(SICI)1099-0488(19990601)37:11<1165::AID-POLB11>3.0.CO;2-E
  • Medeiros, M., & Helene, P. (2008). Efficacy of surface hydrophobic agents in reducing water and chloride ion penetration in concrete. Materials and Structures/Materiaux et Constructions, 41(1), 59–71. https://doi.org/10.1617/s11527-006-9218-5
  • Mercimek, Ö., Ghoroubi, R., Baran, M., & Anil, Ö. (2022). Behaviour of steel beams retrofitted with anchored carbon-fibre-reinforced polymer strips. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 175(7), 561–576. https://doi.org/10.1680/JSTBU.19.00176
  • Neville, A. M. (1995). Properties of concrete. 4th Edition. Pitman Publishing Comp. Ltd., New York
  • Pacheco-Torgal, F., Abdollahnejad, Z., Miraldo, S., Baklouti, S., & Ding, Y. (2012). An overview on the potential of geopolymers for concrete infrastructure rehabilitation. Construction and Building Materials, 36, 1053–1058. https://doi.org/10.1016/j.conbuildmat.2012.07.003
  • Pacheco-Torgal, F., & Jalali, S. (2009). Sulphuric acid resistance of plain, polymer modified, and fly ash cement concretes. Construction and Building Materials, 23(12), 3485–3491. https://doi.org/10.1016/j.conbuildmat.2009.08.001
  • Pan, X., Shi, Z., Shi, C., Ling, T. C., & Li, N. (2017). A review on concrete surface treatment Part I: Types and mechanisms. Construction and Building Materials, 132, 578–590. https://doi.org/10.1016/J.CONBUILDMAT.2016.12.025
  • Pérez, C., Collazo, A., Izquierdo, M., Merino, P., & Nóvoa, X. R. (1999). Characterisation of the barrier properties of different paint systems. Part II. Non-ideal diffusion and water uptake kinetics. Progress in Organic Coatings, 37(3), 169–177. https://doi.org/10.1016/S0300-9440(99)00073-9
  • Perrin, F. X., Merlatti, C., Aragon, E., & Margaillan, A. (2009). Degradation study of polymer coating: Improvement in coating weatherability testing and coating failure prediction. Progress in Organic Coatings, 64(4), 466–473. https://doi.org/10.1016/j.porgcoat.2008.08.015
  • Ramesh Singh. (2014). Corrosion Control for Offshore Structures. Gulf Professional Publishing, Boston.
  • Shen, C.-H., & Springer, G. S. (1976). Moisture Absorption and Desorption of composite materials. Journal of Composite Materials, 10(February), 2–20.
  • Soebbing, J. B., Skabo, R. R., Michel, H. E., Guthikonda, G., & Sharaf, A. H. (1996). Rehabilitating water and wastewater treatment plants. Journal of Protective Coatings and Linings, 13(5), 54–64.
  • Türk Standardı TS EN 206-1, (2002). Beton- Bölüm 1: Özellik, performans, imalat ve uygunluk.
  • Türk Standardı 3289 EN 1354. (1996). Gözenekli Beton-Hafif Agregal-Basınç Mukavemeti Tayini.
  • VanLandingham, M. R., Eduljee, R. F., & Gillespie, J. W. (1999). Moisture Diffusion in Epoxy Systems. Journal of Applied Polymer Science, 71(5), 787–798. https://doi.org/10.1002/(SICI)1097-4628(19990131)71:5<787::AID-APP12>3.0.CO;2-A
  • Woo, L. S. (2002). Rehabilitation of Concrete Structures with Composites by Vacuum Bag.
  • Yang, X. F., Tallman, D. E., Bierwagen, G. P., Croll, S. G., & Rohlik, S. (2002). Blistering and degradation of polyurethane coatings under different accelerated weathering tests. Polymer Degradation and Stability, 77(1), 103–109. https://doi.org/10.1016/S0141-3910(02)00085-X

Vakum yöntemi ile beton yüzeyine uygulanan epoksi reçinenin mukavemeti üzerindeki etkileri

Year 2024, Volume: 14 Issue: 2, 464 - 478, 15.06.2024
https://doi.org/10.17714/gumusfenbil.1282583

Abstract

Bu çalışma kapsamında, karbon elyaf dokuma sarılı beton yüzeyine epoksi reçine bir kompozit üretim tekniği olan vakum infüzyon yöntemi kullanılarak uygulanmıştır. Ayrıca, beton üzerine uygulanan epoksi reçinenin çapraz bağ oranı katalizör (sertleştirici) miktarı üzerinden optimize edilerek vakum ve geleneksel uygulamanın beton dayanımına etkileri karşılaştırılmıştır. Dolayısıyla ağırlıkça 5:2, 2:1 ve 5:3 aralığında reçine/katalizör karışımı karbon elyaf dokuma sarılı C30 sınıfı standart betondan elde edilen 150mm çapında ve 300 mm yüksekliğinde silindirik numunelere vakum ve fırça yardımıyla ayrı şekillerde uygulanmıştır. Elde edilen numunelere basınç dayanım testi yapılmış ve kırılma sonrası örnekler ayrıca mikroskop altında incelenmiştir. Vakum infüzyon tekniği ile reçine/beton arayüzeyinin güçlendiği bilinmektedir. Yapılan testlerin sonucunda epoksi ile kaplamanın betonun mukavemetini arttırdığı ancak fırça ile epoksi uygulanan numunelerin vakum infüzyon ile kaplanan numunelerden daha yüksek bir basma mukavemeti gösterdiği anlaşılmıştır. Ancak vakum infüzyon tekniği ile kaplanan numunelerde basma mukavemetinin uygulanan katalizör miktarı ile orantılı bir şekilde artarken geleneksel teknikte mukavemetin katalizör miktarına ters orantılı bir şekilde azaldığı görülmüştür. Buna göre sertleşen reçine ile vakum tekniğinde mukavemet artarken el ile uygulama tekniğinde mukavemet düşmüştür. Vakum infüzyon tekniği ile kaplanan beton numunelerinin yük altında plastik şekil alma davranışının arttığı ve reçinenin artan katalist miktarı ile birlikte daha tahmin edilebilir bir mühendislik malzemesi davranışı sergilediği görülmüştür. Betonun basınç altında ki kırılgan doğasının tersine artan plastik şekil alma potansiyeli ile birlikte deprem bölgelerinde, köprü, okul ve diğer dayanım gerektiren yapılarda kullanımının avantaj sağlayacağı sonucuna varılmıştır.

Supporting Institution

erciyes üniversitesi Bilimsel Araştırma Projeler Birimi (BAP)

Project Number

Proje no: FYL-2020-10477

References

  • Agwa, M. A., Youssef, S. M., Ali-Eldin, S. S., & Megahed, M. (2022). Integrated vacuum assisted resin infusion and resin transfer molding technique for manufacturing of nano-filled glass fiber reinforced epoxy composite. Journal of Industrial Textiles, 51(3), 5113S-5144S. https://doi.org/10.1177/1528083720932337
  • Almusallam, A. A., Khan, F. M., Dulaijan, S. U., & Al-Amoudi, O. S. B. (2003). Effectiveness of surface coatings in improving concrete durability. Cement and Concrete Composites, 25(4-5 SPEC), 473–481. https://doi.org/10.1016/S0958-9465(02)00087-2
  • Baltazar, L., Santana, J., Lopes, B., Paula Rodrigues, M., & Correia, J. R. (2014). Surface skin protection of concrete with silicate-based impregnations: Influence of the substrate roughness and moisture. Construction and Building Materials, 70, 191–200. https://doi.org/10.1016/j.conbuildmat.2014.07.071
  • Berndt, M. L. (2011). Evaluation of coatings, mortars and mix design for protection of concrete against sulphur oxidising bacteria. Construction and Building Materials, 25(10), 3893–3902. https://doi.org/10.1016/j.conbuildmat.2011.04.014
  • Bertolini, L., Elsener, B., Pedeferri, P., Polder, R. B. (2013). Corrosion of Steel in Concrete:Prevention, diagnosis repair. Wiley, 414.
  • Bin, X., Su, X., Feng, H., Xuefeng, L., Bo, W., Long, Y., Meijun, H., Hongjun, Y., N. Z. (2019). Resin concrete anti-cracking structure and implement thereof.
  • Blaga a., B. J. J. (1985). Polymer Modified Concrete - NRC-IRC. In Government of Canada, National Research Council Canada, Institute for Research in Construction.
  • C.M. Hansson, L. Mammoliti, and B. B. H. (1998). Corrosion Inhibitors in Concrete—Part I: The Principles. Cement and Concrete Research, 28(October), 1775–1781.
  • Dang, Y., Xie, N., Kessel, A., McVey, E., Pace, A., & Shi, X. (2014). Accelerated laboratory evaluation of surface treatments for protecting concrete bridge decks from salt scaling. Construction and Building Materials, 55, 128–135. https://doi.org/10.1016/j.conbuildmat.2014.01.014
  • Delucchi, M., Barbucci, A., & Cerisola, G. (1997). Study of the physico-chemical properties of organic coatings for concrete degradation control. Construction and Building Materials, 11(7–8), 365–371. https://doi.org/10.1016/S0950-0618(97)00060-3
  • Diamanti, M. V., Brenna, A., Bolzoni, F., Berra, M., Pastore, T., & Ormellese, M. (2013). Effect of polymer modified cementitious coatings on water and chloride permeability in concrete. Construction and Building Materials, 49, 720–728. https://doi.org/10.1016/j.conbuildmat.2013.08.050
  • Doǧangün, A. (2004). Performance of reinforced concrete buildings during the May 1, 2003 Bingöl Earthquake in Turkey. Engineering Structures, 26(6), 841–856. https://doi.org/10.1016/j.engstruct.2004.02.005
  • Drozdov, A. D., De, J., Gupta, R. K., & Shah, A. P. (2003). Model for anomalous moisture diffusion through a polymer-clay nanocomposite. Journal of Polymer Science, Part B: Polymer Physics, 41(5), 476–492. https://doi.org/10.1002/polb.10393
  • Elalaoui, O., Ghorbel, E., Mignot, V., & Ben Ouezdou, M. (2012). Mechanical and physical properties of epoxy polymer concrete after exposure to temperatures up to 250 °c. Construction and Building Materials, 27(1), 415–424. https://doi.org/10.1016/j.conbuildmat.2011.07.027
  • Fick, A. (1855). Ueber Diffusion. Annalen Der Physik, 170(1), 59–86. https://doi.org/10.1002/ANDP.18551700105
  • Franzoni, E., Pigino, B., & Pistolesi, C. (2013). Ethyl silicate for surface protection of concrete: Performance in comparison with other inorganic surface treatments. Cement and Concrete Composites, 44, 69–76. https://doi.org/10.1016/j.cemconcomp.2013.05.008
  • Franzoni, E., Varum, H., Natali, M. E., Bignozzi, M. C., Melo, J., Rocha, L., & Pereira, E. (2014). Improvement of historic reinforced concrete/mortars by impregnation and electrochemical methods. Cement and Concrete Composites, 49, 50–58. https://doi.org/10.1016/j.cemconcomp.2013.12.013
  • Hinder, S. J., Lowe, C., Maxted, J. T., Perruchot, C., & Watts, J. F. (2005). Intercoat adhesion failure in a multilayer organic coating system: An X-ray photoelectron spectroscopy study. Progress in Organic Coatings, 54(1), 20–27. https://doi.org/10.1016/j.porgcoat.2005.03.012
  • Ilki, A., Celeb, Z. (1997). Earthquakes, existing buildings and seismic design codes in turkey. Arabian Journal for Science and Engineering, 37, 365–380.
  • İşleyen, Ü. K., Ghoroubi, R., Mercimek, Ö., Anil, Ö., & Erdem, R. T. (2021). Behavior of glulam timber beam strengthened with carbon fiber reinforced polymer strip for flexural loading. Journal of Reinforced Plastics and Composites, 40(17–18), 665–685. https://doi.org/10.1177/0731684421997924/ASSET/IMAGES/LARGE/10.1177_0731684421997924-FIG13.JPEG
  • Kuru Mutlu, H. (2022). Applied research into muttalip clay in Eskişehir. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi B - Teorik Bilimler, 10(1), 27–34.
  • Liu, J., & Vipulanandan, C. (2001). Evaluating a polymer concrete coating for protecting non-metallic underground facilities from sulfuric acid attack. Tunnelling and Underground Space Technology, 16(4), 311–321. https://doi.org/10.1016/S0886-7798(01)00053-0
  • Maggana, C., & Pissis, P. (1999). Water sorption and diffusion studies in an epoxy resin system. Journal of Polymer Science, Part B: Polymer Physics, 37(11), 1165–1182. https://doi.org/10.1002/(SICI)1099-0488(19990601)37:11<1165::AID-POLB11>3.0.CO;2-E
  • Medeiros, M., & Helene, P. (2008). Efficacy of surface hydrophobic agents in reducing water and chloride ion penetration in concrete. Materials and Structures/Materiaux et Constructions, 41(1), 59–71. https://doi.org/10.1617/s11527-006-9218-5
  • Mercimek, Ö., Ghoroubi, R., Baran, M., & Anil, Ö. (2022). Behaviour of steel beams retrofitted with anchored carbon-fibre-reinforced polymer strips. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 175(7), 561–576. https://doi.org/10.1680/JSTBU.19.00176
  • Neville, A. M. (1995). Properties of concrete. 4th Edition. Pitman Publishing Comp. Ltd., New York
  • Pacheco-Torgal, F., Abdollahnejad, Z., Miraldo, S., Baklouti, S., & Ding, Y. (2012). An overview on the potential of geopolymers for concrete infrastructure rehabilitation. Construction and Building Materials, 36, 1053–1058. https://doi.org/10.1016/j.conbuildmat.2012.07.003
  • Pacheco-Torgal, F., & Jalali, S. (2009). Sulphuric acid resistance of plain, polymer modified, and fly ash cement concretes. Construction and Building Materials, 23(12), 3485–3491. https://doi.org/10.1016/j.conbuildmat.2009.08.001
  • Pan, X., Shi, Z., Shi, C., Ling, T. C., & Li, N. (2017). A review on concrete surface treatment Part I: Types and mechanisms. Construction and Building Materials, 132, 578–590. https://doi.org/10.1016/J.CONBUILDMAT.2016.12.025
  • Pérez, C., Collazo, A., Izquierdo, M., Merino, P., & Nóvoa, X. R. (1999). Characterisation of the barrier properties of different paint systems. Part II. Non-ideal diffusion and water uptake kinetics. Progress in Organic Coatings, 37(3), 169–177. https://doi.org/10.1016/S0300-9440(99)00073-9
  • Perrin, F. X., Merlatti, C., Aragon, E., & Margaillan, A. (2009). Degradation study of polymer coating: Improvement in coating weatherability testing and coating failure prediction. Progress in Organic Coatings, 64(4), 466–473. https://doi.org/10.1016/j.porgcoat.2008.08.015
  • Ramesh Singh. (2014). Corrosion Control for Offshore Structures. Gulf Professional Publishing, Boston.
  • Shen, C.-H., & Springer, G. S. (1976). Moisture Absorption and Desorption of composite materials. Journal of Composite Materials, 10(February), 2–20.
  • Soebbing, J. B., Skabo, R. R., Michel, H. E., Guthikonda, G., & Sharaf, A. H. (1996). Rehabilitating water and wastewater treatment plants. Journal of Protective Coatings and Linings, 13(5), 54–64.
  • Türk Standardı TS EN 206-1, (2002). Beton- Bölüm 1: Özellik, performans, imalat ve uygunluk.
  • Türk Standardı 3289 EN 1354. (1996). Gözenekli Beton-Hafif Agregal-Basınç Mukavemeti Tayini.
  • VanLandingham, M. R., Eduljee, R. F., & Gillespie, J. W. (1999). Moisture Diffusion in Epoxy Systems. Journal of Applied Polymer Science, 71(5), 787–798. https://doi.org/10.1002/(SICI)1097-4628(19990131)71:5<787::AID-APP12>3.0.CO;2-A
  • Woo, L. S. (2002). Rehabilitation of Concrete Structures with Composites by Vacuum Bag.
  • Yang, X. F., Tallman, D. E., Bierwagen, G. P., Croll, S. G., & Rohlik, S. (2002). Blistering and degradation of polyurethane coatings under different accelerated weathering tests. Polymer Degradation and Stability, 77(1), 103–109. https://doi.org/10.1016/S0141-3910(02)00085-X
There are 39 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Mehmet Taş 0000-0003-1885-6037

Levent Şendoğdular 0000-0002-6364-0932

Selda Topçu Şendoğdular 0000-0002-7757-4577

Project Number Proje no: FYL-2020-10477
Publication Date June 15, 2024
Submission Date April 13, 2023
Acceptance Date February 5, 2024
Published in Issue Year 2024 Volume: 14 Issue: 2

Cite

APA Taş, M., Şendoğdular, L., & Topçu Şendoğdular, S. (2024). Vakum yöntemi ile beton yüzeyine uygulanan epoksi reçinenin mukavemeti üzerindeki etkileri. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(2), 464-478. https://doi.org/10.17714/gumusfenbil.1282583