Research Article
BibTex RIS Cite

Environmental effects of geothermal energy utilizations: A case study of the Seferihisar geothermal system, İzmir, Türkiye

Year 2024, Volume: 14 Issue: 2, 592 - 607, 15.06.2024
https://doi.org/10.17714/gumusfenbil.1394922

Abstract

Geothermal resources are often regarded as environmentally friendly and sustainable resources. They are utilized for different purposes, including energy generation, thermal tourism and greenhouse cultivation. The utilization type depends on the temperature, chemical characteristics and the flow rates of available geothermal resources. In long-term applications, there is a need for research and monitoring process to assess environmental consequences. Also, supervised use of the resource is crucial for both the geothermal system and its environment, as there is a possibility of unpleasant impacts on the environment, as chemical pollution, subsidence, and thermal effects in cases of improper use of geothermal resources. In Seferihisar, current consumption types of geothermal energy are consisting of a geothermal power plant with an installed capacity of 12 Mwe and a few primitive spas. In the Tuzla geothermal field, the geothermal waters ascending to the surface cause the deposition of travertine, where sea water interference to the geothermal system is clearly observed and supported by XRD analysis of the sample collected from the Tuzla travertine. Seismic activities as earthquakes, affect the surface manifestations of the SGS. The temperature measurement values obtained from Tuzla and Doğanbey are higher than the values recorded prior to the installation of the geothermal power plant. The operation of the geothermal power plant has caused the nearby hot springs to dry up and has ceased travertine deposition in the Cumalı geothermal field. The annual mean values of NO₂ and SO₂ for the region are lower than the National threshold value and European Union Countries’ threshold value.

Supporting Institution

---

Project Number

---

References

  • Akkuş, İ., Akıllı, H., Ceyhan, S., Dilemre, A. & Tekin, Z. (2005). Türkiye jeotermal kaynaklar envanteri, Inventory Serie: 201, MTA, Ankara, 2005.
  • Alacalı, M. (2023). Geothermal reaction of the Seferihisar geothermal system after the Samos earthquake and geothermal energy potential of the Seferihisar geothermal system, İzmir, Türkiye. Environ Earth Sci, 82, 354, https://doi.org/10.1007/s12665-023-11044-5.
  • Albertsson, A., Blondal, A., Barkarson, B. H., Jonsdottir, S. Dr. & Thors, S. G. (2010). Environmental impact assessment of geothermal projects in Iceland. Proceedings World Geothermal Congress, Bali, Indonesia, 25-29 April.
  • Ayaz, M. (2002). The necessary examinations of travertines and choosing the using place. Bulletin of Engineering of Cumhuriyet University, Serie A-Earth Sciences, 19, 1, 11-20.
  • Aydın, İ., Karat, H. İ. & Koçak, A. (2005). Curie-depth map of Türkiye. Geophys. J. Int. 162, 633-640.
  • Baba, A. & Ármannsson, H. (2006). Environmental impact of the utilization of a geothermal area in Türkiye. Energy Sources, Part B: Economics, Planning and Policy, 1:3, 267-278.
  • Baba, A. (2004). Environmental impact of the utilization of a geothermal area. Journal of İstanbul Kültür University, pp. 33-38.
  • Baba, A.& Sözbilir, H. (2012). Source of arsenic based on geological and hydrogeochemical properties of geothermal systems in Western Türkiye. Chemical Geology, 334, 364-377, https://doi.org/ 10.1016/j.chemgeo.2012.06.006.
  • Bakak, Ö. Özel E. & and Ergün, M. (2015). Geothermal potential of the Sığacık Gulf (Seferihisar) and preliminary investigations with seismic and magnetic surveys. Elsevier Energy Procedia 76:230-239, https://doi.org/10.1016/j.egypro.2015.07.909.
  • Bargar, K. E. (1978). Geology and thermal history of Mammoth Hot Springs. Yellowstone National Park, Wyoming. U.S. Geol. Surv. Bull. 1444, https://doi.org/10.3133/b1444, 1978.
  • Bošnjaković, M., Stojkov, M. & Jurjević, M. (2019). Environmental impacts of geothermal power plants. Technical Gazette 26, 1515-1522. https://doi.org/10.17559/TV-20180829122640.
  • Bulut, M. (2013). A new medium to high enthalpy geothermal field in Aegean region (Akyar) Menderes-Seferihisar-İzmir, Western Anatolia, Turkey. Bulletin of the Mineral Research and Exploration, 147, 153-167.
  • C. Gerday, C. & Berlemont, R. (2011). Extremophiles. Comprehensive biotechnology, (Second Edition), 1, pp. 229-242.
  • Doğdu, M. S. & Bayarı, C. S. (2005). Environmental impact of geothermal fluids on surface water, groundwater and streambed sediments in the Akarcay Basin, Türkiye. Environmental Geology, 47, 325–340, 2005. https://doi.org/10.1007/s00254-004-1154-5.
  • Duan, Z. & Sun, R. (2003). An improved model calculating CO₂ solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chemical Geology, 193, 257-271.
  • Ellis, A. J. (1959). The solubility of calcite in carbon dioxide solutions. American Journal of Science, Vol. 257, May, pp.354-3651.
  • Erdoğan, B. (1990). İzmir-Ankara Zonu’nun, İzmir ile Seferihisar arasındaki bölgede stratigrafik özellikleri ve tektonik evrimi. Turkish Association of Petroleum Geologists (TPJD) 2,1–20 (in Turkish).
  • Erol, S. Ç. (2016). Geological, Tectonic Geochemical and Geochronological Properties of Travertine Occurrences Along the Strike-Slip Fault Systems:A Case From Southweatern Part of Sivrice (Elazığ). Geological Bulletin of Turkey, 59, 3, 341-355.
  • Eşder, T. & Şimşek, Ş. (1975). Geology of İzmir (Seferihisar) geothermal area, Western Anatolia of Türkiye: determination of reservoirs by means of gradient drilling. Proceedings of 2nd UN. Symposium, pp. 349-361.
  • European Environment Agency. (2023). EMEP/EEA air pollutant emission inventory guidebook.
  • Ferrara, N., Basosi, R. & Parisi, M. L. (2019). Data analysis of atmospheric emission from geothermal power plants in Italy. Data in Brief, 25, 104339. https://doi.org/10.1016/j.jclepro.2019.06.22.
  • Genç, C. Ş., Altunkaynak, Ş. Karacık, Z., Yazman, M & Yılmaz, Y. (2001). The Çubukludağ graben, south of İzmir: its tectonic significance in the Neogene geological evolution of the western Anatolia. Geodinamica Acta, 14:1-3, 45-55.
  • Goff, F. E. & Shevenell, L. (1987). Travertine deposits of Soda Dam, New Mexico, and their implications for the age and evolution of the Valles caldera hydrothermal system. Geol. Soc. Am. Bull. 99, 292–302.
  • Google Earth. (2014). Way Out TV, Inc., Santa Monica, CA.
  • Guo, Q., Wang, Y & Liu, W. (2009). Hydrogeochemistry and environmental impact of geothermal waters from Yangyi of Tibet, China. Journal of Volcanology and Geothermal Research, 180, 1, 9-20.
  • Hariharasuthan, R., Radha, K. S., Vaheith, Z. A., SenthilKannan, K. (2023). Electric, nano-dielectric, mass and fluorescence spectral characterizations of 2-amino 4-methyl pyridium fumaret novel crystals for use in opto-electronics and electronic displays. J. Mater Sci: Mater Electron, 34:743. https://doi.org/10.1007/s10854-023-10158-7.
  • Huang, S. & Tian, T. (2006). Study of environmental impact in geothermal development and utilization. Proceedigs of the 7th Asian Geothermal Symposium, July 25-26, 2006.
  • Hunt, T. (2001). Five lectures on environmental effects of geothermal utilization. Institute of Geological and Nuclear Sciences, Taupo, New Zealand. ISBN-9979-68-070-9.
  • Işıntek, İ. & Savaş, F. (2022). Structures and Petrographic Properties of Travertine Occurrences in Doğanbey and Karakoç Thermal Baths and Tuzla Geothermal Area (Seferihisar, İzmir, Western Turkey). 74th Geological Congress of Turkey with international participation, April 11-15, Ankara, Turkey.
  • Kagel, A., Bates, D. & Gawell, K. (2007). A Guide to Geothermal Energy and the Environment. Geothermal Energy Association. Washington, DC.
  • Kristmannsdo´ttir, H. & A´rmannsson, A: (2003). Environmental aspects of geothermal energy utilization. Elsevier, Geothermics, 32, 451–461. doi:10.1016/S0375-6505(03)00052-X.
  • Maione, A., Massrotti, N., Santagat, R. & Vanoli, L. (2022). Environment al assessment of a heating, cooling and electric energy grid from a geothermal source in Southern Italy. Journal of Cleaner Production 375, 134198. https://doi.org/10.1016/j.clepro.2022.134198.
  • Mazor, E. (2004). Chemical and isotopic groundwater hydrology. Third Edition. Marcel Dekker, Inc., 270 Mason Avenue, New York, NY 10016, U.S.A.
  • Minissale, A., Kerrick, D. M., Magro, G., Murrell, M. T., Paladini, M. T., Rihs, S., Sturchio, N. C., Tassi, F. & Vaselli, O. (2002). Geochemistry of Quaternary travertines in the region north of Rome (Italy): structural, hydrologic and paleoclimatic implications. Earth and Planetary Science Letters, 203, 2, 709-728.
  • Moore, D. M. & Reynolds, R. C. (1989). X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, New York. 322p.
  • Özer, C. & Polat, O. (2017). Investigation of 1-D (One-Dimensional) seismic velocity structure of İzmir and surroundings, DEU Journal of Science and Engineering, 19, 55, 2017. (Article in Turkish with an English abstract), doi: 10.21205/deufmd.2017195512.
  • Özkul, M., Gül, A., Semiz, B. & Özen, H. (2022). An overview of the geological values of Denizli province. 74th Geological Congress of Turkey with international participation, April 11-15, Ankara, Turkey.
  • Rampelotto, H. P. (2013). Extremophiles and Extreme Environments. Life, 3, 482-485, doi:10.3390/life3030-482.
  • Sözbilir, H. Uzel, B., Sümer, Ö., İnci, U., Ersoy, E. Y., Koçer, T., Demirtaş, R. & Özkaymak, Ç. (2008). Evidence for a kinematically linked E-W trending İzmir Fault and N-E trending Seferihisar Fault. Kinematic and paleoseismogical studies carried out on active faults forming the İzmir Bay, Western Anatolia. Geological Bulletin of Türkiye, 56,2, 91-114(Article in Turkish with an abstract in English).
  • Tarcan, G. & Gemici, Ü. (2003). Water geochemistry of the Seferihisar geothermal area, Izmir, Türkiye. Journal of Volcanology and Geothermal Research, 126, 225-242.
  • Tarcan, G., Gemici, Ü. & Aksoy, N. (2004). “Hydrogeological investigation of hot and mineral springs in İzmir Province and comparision with some important springs”. The Scientific and Technical Research Council of Türkiye, Project No: YDABAG-102Y039, 253p.
  • ThinkGeoEnergy, https://www.thinkgeoenergy.com/th-inkgeoenergys-top-10-geothermal-countries-2022-po-wer-generation-capacity-mw/, Accessed at 19.08.2023.
  • Türkiye Ministry of Environment, Urbanization and Climate Change-National Air Quality Monitoring Network, website.
  • United Nations. The sustainable development goals report-2023, Special Edition, available from “https://unstats.un.org/sdgs/report/2023/The-Sustainable-Development-Goals-Report-2023.pdf”, Accessed at 19.08.2023.
  • Uzel, B. & Sözbilir, H. (2008). A first record of strike-slip basin in western Anatolia and its tectonic implication: The Cumaovası basin as an example. Turkish J Earth Sci, 17, 559–91.
  • Valente, E., Casaburi, A., Finizio, M., Papaleo, L., Sorrentino, A. & Santangelo, N. (2022). Defining the geotourism potential of the CILENTO, Vallo di Diano and Alburni UNESCO Global Geopark (Southern Italy). Geosciences, 11:466, https://doi.org/10.3390/geoscie-nces11110466.
  • Vengosh, A., Helvacı, C. & Karamanderesi, İ. H. (2002). Geochemical constraints for the origin of thermal waters from western Turkey. Applied Geochemistry 17, 163-183.
  • Wahlund, T. M., Woese, C. R., Castenholz, W. R. & Madigan, T. M. (1991). A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov., SpringerLink Archives of Microbiology.156, 81-90, https://doi.org/10.1007/BF00290978.
  • Wohletz, K. & Heiken, G. (1992). Volcanology and Geothermal Energy. Berkeley University of California Press, http://ark.cdlib.org/ark:/13030/ft6v19p151/.

Jeotermal enerji kullanımının çevresel etkileri: Seferihisar jeotermal sistemi örneği, İzmir, Türkiye

Year 2024, Volume: 14 Issue: 2, 592 - 607, 15.06.2024
https://doi.org/10.17714/gumusfenbil.1394922

Abstract

Jeotermal kaynaklar, genellikle çevre dostu ve sürdürülebilir kaynaklar olarak kabul edilmektedir. Enerji üretimi, termal turizm ve sera ısıtması dahil olmak üzere farklı kullanım türleri bulunmaktadır. Kullanım türü mevcut jeotermal kaynağın sıcaklığı, kimyasal özellikleri ve debisine bağlıdır. Uzun vadeli uygulamalarda, çevresel etkilerini ve sonuçlarını değerlendirmek için araştırma ve izleme süreçlerine ihtiyaç duyulmaktadır. Ayrıca, jeotermal kaynakların yanlış kullanılması halinde kimyasal kirlilik, çöküntüler ve termal etkiler gibi olumsuz çevresel etkilerin ortaya çıkma olasılığı da bulunduğundan, kaynağın denetimli kullanımı hem jeotermal sistem hem de kaynağın bulunduğu bölge açısından önem taşımaktadır. Seferihisar jeotermal sistemindeki jeotermal enerjinin mevcut kullanım alanları 12 MWe kurulu güce sahip jeotermal enerji santrali ve birkaç ilkel kaplıcadan ibarettir. Denizsuyu girişiminin net olarak gözlendiği Tuzla jeotermal sahasında yüzeye çıkan jeotermal sular traverten oluşumuna neden olmakta ve Tuzla travertenlerinden alınan numunenin XRD analizi ile desteklenmektedir. Deprem gibi sismik aktiviteler SJS’nin yüzeysel belirtilerini etkilemektedir. Tuzla ve Doğanbey’de elde edilen sıcaklık ölçüm değerleri, jeotermal enerji santralinin kurulmasından önceki değerlerden daha yüksektir. Jeotermal elektrik santralinin faaliyete geçmesi, yakınındaki sıcak su çıkışlarının kurumasına ve Cumalı jeotermal sahasındaki traverten oluşumunun durmasına neden olmuştur. Bölgedeki NO₂ ve SO₂’nin yıllık ortalama değerleri Ulusal limit değerinden ve Avrupa Birliği Ülkeleri limit değerinden düşüktür.

Supporting Institution

---

Project Number

---

References

  • Akkuş, İ., Akıllı, H., Ceyhan, S., Dilemre, A. & Tekin, Z. (2005). Türkiye jeotermal kaynaklar envanteri, Inventory Serie: 201, MTA, Ankara, 2005.
  • Alacalı, M. (2023). Geothermal reaction of the Seferihisar geothermal system after the Samos earthquake and geothermal energy potential of the Seferihisar geothermal system, İzmir, Türkiye. Environ Earth Sci, 82, 354, https://doi.org/10.1007/s12665-023-11044-5.
  • Albertsson, A., Blondal, A., Barkarson, B. H., Jonsdottir, S. Dr. & Thors, S. G. (2010). Environmental impact assessment of geothermal projects in Iceland. Proceedings World Geothermal Congress, Bali, Indonesia, 25-29 April.
  • Ayaz, M. (2002). The necessary examinations of travertines and choosing the using place. Bulletin of Engineering of Cumhuriyet University, Serie A-Earth Sciences, 19, 1, 11-20.
  • Aydın, İ., Karat, H. İ. & Koçak, A. (2005). Curie-depth map of Türkiye. Geophys. J. Int. 162, 633-640.
  • Baba, A. & Ármannsson, H. (2006). Environmental impact of the utilization of a geothermal area in Türkiye. Energy Sources, Part B: Economics, Planning and Policy, 1:3, 267-278.
  • Baba, A. (2004). Environmental impact of the utilization of a geothermal area. Journal of İstanbul Kültür University, pp. 33-38.
  • Baba, A.& Sözbilir, H. (2012). Source of arsenic based on geological and hydrogeochemical properties of geothermal systems in Western Türkiye. Chemical Geology, 334, 364-377, https://doi.org/ 10.1016/j.chemgeo.2012.06.006.
  • Bakak, Ö. Özel E. & and Ergün, M. (2015). Geothermal potential of the Sığacık Gulf (Seferihisar) and preliminary investigations with seismic and magnetic surveys. Elsevier Energy Procedia 76:230-239, https://doi.org/10.1016/j.egypro.2015.07.909.
  • Bargar, K. E. (1978). Geology and thermal history of Mammoth Hot Springs. Yellowstone National Park, Wyoming. U.S. Geol. Surv. Bull. 1444, https://doi.org/10.3133/b1444, 1978.
  • Bošnjaković, M., Stojkov, M. & Jurjević, M. (2019). Environmental impacts of geothermal power plants. Technical Gazette 26, 1515-1522. https://doi.org/10.17559/TV-20180829122640.
  • Bulut, M. (2013). A new medium to high enthalpy geothermal field in Aegean region (Akyar) Menderes-Seferihisar-İzmir, Western Anatolia, Turkey. Bulletin of the Mineral Research and Exploration, 147, 153-167.
  • C. Gerday, C. & Berlemont, R. (2011). Extremophiles. Comprehensive biotechnology, (Second Edition), 1, pp. 229-242.
  • Doğdu, M. S. & Bayarı, C. S. (2005). Environmental impact of geothermal fluids on surface water, groundwater and streambed sediments in the Akarcay Basin, Türkiye. Environmental Geology, 47, 325–340, 2005. https://doi.org/10.1007/s00254-004-1154-5.
  • Duan, Z. & Sun, R. (2003). An improved model calculating CO₂ solubility in pure water and aqueous NaCl solutions from 273 to 533 K and from 0 to 2000 bar. Chemical Geology, 193, 257-271.
  • Ellis, A. J. (1959). The solubility of calcite in carbon dioxide solutions. American Journal of Science, Vol. 257, May, pp.354-3651.
  • Erdoğan, B. (1990). İzmir-Ankara Zonu’nun, İzmir ile Seferihisar arasındaki bölgede stratigrafik özellikleri ve tektonik evrimi. Turkish Association of Petroleum Geologists (TPJD) 2,1–20 (in Turkish).
  • Erol, S. Ç. (2016). Geological, Tectonic Geochemical and Geochronological Properties of Travertine Occurrences Along the Strike-Slip Fault Systems:A Case From Southweatern Part of Sivrice (Elazığ). Geological Bulletin of Turkey, 59, 3, 341-355.
  • Eşder, T. & Şimşek, Ş. (1975). Geology of İzmir (Seferihisar) geothermal area, Western Anatolia of Türkiye: determination of reservoirs by means of gradient drilling. Proceedings of 2nd UN. Symposium, pp. 349-361.
  • European Environment Agency. (2023). EMEP/EEA air pollutant emission inventory guidebook.
  • Ferrara, N., Basosi, R. & Parisi, M. L. (2019). Data analysis of atmospheric emission from geothermal power plants in Italy. Data in Brief, 25, 104339. https://doi.org/10.1016/j.jclepro.2019.06.22.
  • Genç, C. Ş., Altunkaynak, Ş. Karacık, Z., Yazman, M & Yılmaz, Y. (2001). The Çubukludağ graben, south of İzmir: its tectonic significance in the Neogene geological evolution of the western Anatolia. Geodinamica Acta, 14:1-3, 45-55.
  • Goff, F. E. & Shevenell, L. (1987). Travertine deposits of Soda Dam, New Mexico, and their implications for the age and evolution of the Valles caldera hydrothermal system. Geol. Soc. Am. Bull. 99, 292–302.
  • Google Earth. (2014). Way Out TV, Inc., Santa Monica, CA.
  • Guo, Q., Wang, Y & Liu, W. (2009). Hydrogeochemistry and environmental impact of geothermal waters from Yangyi of Tibet, China. Journal of Volcanology and Geothermal Research, 180, 1, 9-20.
  • Hariharasuthan, R., Radha, K. S., Vaheith, Z. A., SenthilKannan, K. (2023). Electric, nano-dielectric, mass and fluorescence spectral characterizations of 2-amino 4-methyl pyridium fumaret novel crystals for use in opto-electronics and electronic displays. J. Mater Sci: Mater Electron, 34:743. https://doi.org/10.1007/s10854-023-10158-7.
  • Huang, S. & Tian, T. (2006). Study of environmental impact in geothermal development and utilization. Proceedigs of the 7th Asian Geothermal Symposium, July 25-26, 2006.
  • Hunt, T. (2001). Five lectures on environmental effects of geothermal utilization. Institute of Geological and Nuclear Sciences, Taupo, New Zealand. ISBN-9979-68-070-9.
  • Işıntek, İ. & Savaş, F. (2022). Structures and Petrographic Properties of Travertine Occurrences in Doğanbey and Karakoç Thermal Baths and Tuzla Geothermal Area (Seferihisar, İzmir, Western Turkey). 74th Geological Congress of Turkey with international participation, April 11-15, Ankara, Turkey.
  • Kagel, A., Bates, D. & Gawell, K. (2007). A Guide to Geothermal Energy and the Environment. Geothermal Energy Association. Washington, DC.
  • Kristmannsdo´ttir, H. & A´rmannsson, A: (2003). Environmental aspects of geothermal energy utilization. Elsevier, Geothermics, 32, 451–461. doi:10.1016/S0375-6505(03)00052-X.
  • Maione, A., Massrotti, N., Santagat, R. & Vanoli, L. (2022). Environment al assessment of a heating, cooling and electric energy grid from a geothermal source in Southern Italy. Journal of Cleaner Production 375, 134198. https://doi.org/10.1016/j.clepro.2022.134198.
  • Mazor, E. (2004). Chemical and isotopic groundwater hydrology. Third Edition. Marcel Dekker, Inc., 270 Mason Avenue, New York, NY 10016, U.S.A.
  • Minissale, A., Kerrick, D. M., Magro, G., Murrell, M. T., Paladini, M. T., Rihs, S., Sturchio, N. C., Tassi, F. & Vaselli, O. (2002). Geochemistry of Quaternary travertines in the region north of Rome (Italy): structural, hydrologic and paleoclimatic implications. Earth and Planetary Science Letters, 203, 2, 709-728.
  • Moore, D. M. & Reynolds, R. C. (1989). X-ray diffraction and the identification and analysis of clay minerals. Oxford University Press, New York. 322p.
  • Özer, C. & Polat, O. (2017). Investigation of 1-D (One-Dimensional) seismic velocity structure of İzmir and surroundings, DEU Journal of Science and Engineering, 19, 55, 2017. (Article in Turkish with an English abstract), doi: 10.21205/deufmd.2017195512.
  • Özkul, M., Gül, A., Semiz, B. & Özen, H. (2022). An overview of the geological values of Denizli province. 74th Geological Congress of Turkey with international participation, April 11-15, Ankara, Turkey.
  • Rampelotto, H. P. (2013). Extremophiles and Extreme Environments. Life, 3, 482-485, doi:10.3390/life3030-482.
  • Sözbilir, H. Uzel, B., Sümer, Ö., İnci, U., Ersoy, E. Y., Koçer, T., Demirtaş, R. & Özkaymak, Ç. (2008). Evidence for a kinematically linked E-W trending İzmir Fault and N-E trending Seferihisar Fault. Kinematic and paleoseismogical studies carried out on active faults forming the İzmir Bay, Western Anatolia. Geological Bulletin of Türkiye, 56,2, 91-114(Article in Turkish with an abstract in English).
  • Tarcan, G. & Gemici, Ü. (2003). Water geochemistry of the Seferihisar geothermal area, Izmir, Türkiye. Journal of Volcanology and Geothermal Research, 126, 225-242.
  • Tarcan, G., Gemici, Ü. & Aksoy, N. (2004). “Hydrogeological investigation of hot and mineral springs in İzmir Province and comparision with some important springs”. The Scientific and Technical Research Council of Türkiye, Project No: YDABAG-102Y039, 253p.
  • ThinkGeoEnergy, https://www.thinkgeoenergy.com/th-inkgeoenergys-top-10-geothermal-countries-2022-po-wer-generation-capacity-mw/, Accessed at 19.08.2023.
  • Türkiye Ministry of Environment, Urbanization and Climate Change-National Air Quality Monitoring Network, website.
  • United Nations. The sustainable development goals report-2023, Special Edition, available from “https://unstats.un.org/sdgs/report/2023/The-Sustainable-Development-Goals-Report-2023.pdf”, Accessed at 19.08.2023.
  • Uzel, B. & Sözbilir, H. (2008). A first record of strike-slip basin in western Anatolia and its tectonic implication: The Cumaovası basin as an example. Turkish J Earth Sci, 17, 559–91.
  • Valente, E., Casaburi, A., Finizio, M., Papaleo, L., Sorrentino, A. & Santangelo, N. (2022). Defining the geotourism potential of the CILENTO, Vallo di Diano and Alburni UNESCO Global Geopark (Southern Italy). Geosciences, 11:466, https://doi.org/10.3390/geoscie-nces11110466.
  • Vengosh, A., Helvacı, C. & Karamanderesi, İ. H. (2002). Geochemical constraints for the origin of thermal waters from western Turkey. Applied Geochemistry 17, 163-183.
  • Wahlund, T. M., Woese, C. R., Castenholz, W. R. & Madigan, T. M. (1991). A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov., SpringerLink Archives of Microbiology.156, 81-90, https://doi.org/10.1007/BF00290978.
  • Wohletz, K. & Heiken, G. (1992). Volcanology and Geothermal Energy. Berkeley University of California Press, http://ark.cdlib.org/ark:/13030/ft6v19p151/.
There are 49 citations in total.

Details

Primary Language English
Subjects Geothermal
Journal Section Articles
Authors

Mine Alacalı 0000-0003-2925-8737

Project Number ---
Publication Date June 15, 2024
Submission Date November 23, 2023
Acceptance Date March 14, 2024
Published in Issue Year 2024 Volume: 14 Issue: 2

Cite

APA Alacalı, M. (2024). Environmental effects of geothermal energy utilizations: A case study of the Seferihisar geothermal system, İzmir, Türkiye. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(2), 592-607. https://doi.org/10.17714/gumusfenbil.1394922