Research Article
BibTex RIS Cite

Fiber takviyesi ile killi zeminlerin kıvam limitlerinde meydana gelen değişimler

Year 2024, Volume: 14 Issue: 2, 582 - 591, 15.06.2024
https://doi.org/10.17714/gumusfenbil.1425830

Abstract

Killerin mühendislik özelliklerinin iyileştirilmesi amacıyla kullanılan birçok yöntem bulunmaktadır. Bu geleneksel yöntemlere son yıllarda kullanımı giderek yaygınlaşan fiber ile güçlendirme yöntemi de eklenmiştir. Geleneksel yöntemlere göre birçok avantaja sahip olan bu yöntemde daha çok bazalt, cam, polipropilen gibi fiber türleri kullanılmakta ve dolguda kullanılan zeminlerin mühendislik özellikleri iyileştirilebilmektedir. Zemin güçlendirmede fiber kullanımının son zamanlarda mühendislik uygulamalarında yoğun bir şekilde kullanılmaya başlanması ile birlikte, bu konuda yapılan bilimsel çalışmalarda da önemli bir artış söz konusudur. Fiber takviyesi kullanılarak bugüne kadar yapılan çalışmalarda çoğunlukla zeminin dayanımında, şişme özelliklerinde meydana gelen değişimler incelenmiştir. Ancak zeminin kıvam limitleri üzerinde fiberin etkisinin incelendiği çalışma oldukça azdır. Kıvam limitlerindeki değişim zemin stabilizesi üzerinde etkili olduğundan fiber takviyesiyle meydana gelen değişimlerin belirlenmesi oldukça önemlidir. Fiber kullanımı sonucunda fiber–zemin etkileşimlerinin, zeminin jeoteknik özelliklerinde meydana gelen değişimlerin ve bu değişimlerdeki mekanizmanın anlaşılabilmesi için daha fazla bilimsel çalışmaya ve veri tabanına ihtiyaç vardır. Bu çalışmada, kaolin kiline farklı oranlarda bazalt fiber takviyesiyle likit ve plastik limit değerlerinde meydana gelen değişimler incelenmiştir. Bu amaçla kaolin kiline % 0.25, 0.50, 1.00, 1.50, 2.00, 2.50 ve 3.00 oranlarında 24 mm uzunluğa sahip bazalt fiber eklenerek hazırlanan kil örneklerinin likit limit, plastik limit ve plastisite indisi değerlerinde meydana gelen değişimler incelenmiştir. Çalışmanın sonuçlarına göre, bazalt fiber takviyesi ile kaolin kilinin likit limit değerlerinde azalma, plastik limit değerlerinde ise artış meydana gelmiştir. Takviyeli kaolin kilinde likit limitte en fazla azalmanın, plastik limitte ise en fazla artışın meydana geldiği bazalt fiber oranı ise % 2.00 olarak belirlenmiştir. Likit ve plastik limit değerlerinde meydana gelen bu değişimler sonucunda kaolin kilinin plastisite indisinde de azalma meydana gelmiş ve bu azalmaya bağlı olarak kaolin kili daha stabil hale gelmiştir.

References

  • Al-Kaream, K. W.A., Fattah, M. Y. ve Hameedi, M. K. (2022). Compressibility and strength development of soft soil by polypropylene fiber. International Journal of GEOMATE, 22(93), 91-97.
  • Aslan Topçuoğlu, Y., & Gürocak, Z. (2023). Sodyum bentonit kilini güçlendirmede maksimum dayanım için optimum bazalt fiber oranının belirlenmesi. Dicle University Journal of Engineering/Dicle Üniversitesi Mühendislik Dergisi, 14(3). https://doi.org/10.24012/dumf.1346476
  • Aslan Topçuoğlu, Y., & Gürocak, Z. (2024). The effect of basalt fiber reinforcement at different ratios on the unconfined compressive strength of kaolin. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(1), 1-1. https://doi.org/10.28948/ngumuh.1352665
  • ASTM D4318-17e1, (2017). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, West Conshohocken, PA.
  • Amini, P. F., & Noorzad, R. (2018). Energy-based evaluation of liquefaction of fiber-reinforced sand using cyclic triaxial testing. Soil Dynamics and Earthquake Engineering, 104, 45-53. https://doi.org/10.1016/j.soildyn.2017.09.026
  • Aravalli, A. B., Hulagabali, A. M., Solanki, C. H., & Dodagoudar, G. R. (2017). Enhancement of index and engineering properties of expansive soil using chopped basalt fibers. Indian Geotechnical Conference 2017 GeoNEs, 14-16 December 2017, IIT Guwahati, India, 1-4.
  • Aishwarya, R., & Rachel, P. P. (2023). Comparative study on Atterberg limits of soil and basalt fiber composite as an eco-friendly construction material. Materials Today: Proceedings, 77, 563-567. https://doi.org/10.1016/j.matpr.2023.01.212
  • Bao, X., Huang, Y., Jin, Z., Xiao, X., Tang, W., Cui, H., & Chen, X. (2021). Experimental investigation on mechanical properties of clay soil reinforced with carbon fiber. Construction and Building Materials, 280, 1-9. https://doi.org/10.1016/j.conbuildmat.2021.122517
  • Baruah, H. (2015). Effect of glass fiber on red soil. International Journal of Advanced Technology in Engineering and Science, 3(1), 217-223. https://ijates.com/images/short_pdf/1447955068_211D.pdf
  • Behbahani, B. A., Sedaghatnezhad, H., & Changizi, F. (2016). Engineering properties of soils reinforced by recycled polyester fiber. Journal of Mechanical and Civil Engineering (IOSR-JMCE), 13(2), 01-07. 10.9790/1684-1302030107
  • Chaudhary, R. (2021). Enhancing the properties of soil by stabilization technique using basalt fiber, Civil Engineering Department, Delhi Technological Unıversity.
  • Cui, H., Jin, Z., Bao, X., Tang, W., & Dong, B. (2018). Effect of carbon fiber and nanosilica on shear properties of silty soil and the mechanisms. Construction and Building Materials, 189, 286-295. https://doi.org/10.1016/j.conbuildmat.2018.08.181
  • Diambra, A., Ibraim, E., Wood, D. M., & Russell, A. R. (2010). Fibre reinforced sands: experiments and modeling. Geotextiles & Geomembranes, 28(3), 238-250. https://doi.org/10.1016/j.geotexmem.2009.09.010
  • Edincliler, A., & Cagatay, A. (2013). Weak subgrade improvement with rubber fibre inclusions. Geosynthetics International, 20(1), 39-46. https://doi.org/10.1680/gein.12.00038
  • Eskişar, T., Karakan, E., & Altun, S. (2016). Effects of fibre reinforcement on liquefaction behaviour of poorly graded sands. Procedia Engineering, 161, 538-542. https://doi.org/10.1016/j.proeng.2016.08.688
  • Estabragh, A. R., Bordbar, A. T., & Javadi, A. A. (2011). Mechanical behavior of a clay soil reinforced with nylon fibers. Geotechnical and Geological Engineering, 29(5), 899-908. DOI 10.1007/s10706-011-9427-8
  • Gao, L., Hu, G., Xu, N., Fu, J., Xiang, C., & Yang, C. (2015). Experimental study on unconfined compressive strength of basalt fiber reinforced clay soil. Advances in Materials Science and Engineering, 2015, 1-8. https://doi.org/10.1155/2015/561293
  • Gürocak Z. ve Aslan Topçuoğlu Y. (2023). Bazalt fiber kullanımının düşük plastisiteli kilin serbest basınç dayanımı üzerindeki etkisi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(3), 688-701, https://doi.org/10.17714/gumusfenbil.1283148
  • Jamshaid, H., & Mishra, R. (2015). A green material from rock: basalt fiber-a review. The Journal of The Textile Institute, 107(7), 923-937. https://doi.org/10.1080/00405000.2015.1071940
  • Kale, R. Y., Dahake, N. D., Sahu, S. M., Gawande, G. A., Wailker, P. J., Patekar, V. R., & Pawar, C. R. (2020). Soil Stabilization by using Basalt Fibers. International Journal of Scientific Research & Engineering Trends, 6(3), 1931-1935.
  • Khudhair, A. H., Mahmood, R. A., & Jaber, M. A. (2022). Improving some geotechnical properties of cohesive soils by adding basalt fibers and portland cement in Basra Governorate-Southern Iraq. Design Engineering, 1, 1509-1522
  • Kinjal, S., Desai, A. K., & Solanki, C. H. (2012). Experimental study on the Atterberg limits of expansive soil reinforced with polyester triangular fibers. International Journal of Engineering Research and Applications, 2(4), 636-639.
  • MTA-Maden Tetkik Arama. (2024, Ocak, 5). https://www.mta.gov.tr/v3.0/sayfalar/bilgi-merkezi/maden-serisi/img/kaolen.pdf
  • Mukhtar, M., & Kumar, A. (2022). To Study the behavior of compacted soil using basalt fibers. International Journal of Innovative Research in Engineering & Management, 9(2), 360-366.
  • Orakoglu, M. E., & Liu, J. (2017). Effect of freeze-thaw cycles on triaxial strength properties of fiber-reinforced clayey soil. KSCE Journal of Civil Engineering, 21(6), 2128-2140. DOI 10.1007/s12205-017-0960-8
  • Pandit, V. M., Rohit, C., Tushar, K., Ayushi, C., Bhushan, G., & Deepali, C. (2018). Study of basalt fiber on compaction characteristics of black cotton soil. 6th International Conference on Recent Trends in Engineering & Technology (ICRTET), 850-853.
  • Pradhan, P. K., Kar, R. K., & Naik, A. (2012). Effect of random inclusion of polypropylene fibers on strength characteristics of cohesive soil. Geotechnical and Geological Engineering, 30, 15-25. DOI 10.1007/s10706-011-9445-6
  • Roustaei, M., Eslami, A. & Ghazavi, M. (2015). Effects of freeze-thaw cycles on a fiber reinforced fine grained soil in relation to geotechnical parameters. Cold Regions Science and Technology, 120, 127-137. https://doi.org/10.1016/j.coldregions.2015.09.011
  • Sujatha, E. R., Atchaya, P., Darshan, S. & Subhashini, S. (2021). Mechanical properties of glass fibre reinforced soil and its application as subgrade reinforcement. Road Materials and Pavement Design, 22(10), 2384-2395. https://doi.org/10.1080/14680629.2020.1746387
  • Sungur, A., Yazıcı, M.F., & Keskin, S. N. (2021). Bazalt lifi ile güçlendirilmiş killi zeminin mühendislik özellikleri üzerine deneysel araştırma. Avrupa Bilim ve Teknoloji Dergisi Özel Sayı, 28, 895-899. https://doi.org/10.31590/ejosat.1011881
  • Tang, C., Shi, B., Gao, W., Chen, F., & Cai, Y. (2007). Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles and Geomembranes, 25(3), 194-202. https://doi.org/10.1016/j.geotexmem.2006.11.002
  • Valipour, M., Shourijeh, P.T., & Mohammadina, A. (2021). Application of recycled tire polymer fibers and glass fibers for clay reinforcement. Transportation Geotechnics, 27, 1-14. https://doi.org/10.1016/j.trgeo.2020.100474
  • Wang, S., Xue, Q., Ma, W., Zhao, K., & Wu, Z. (2021). Experimental study on mechanical properties of fiber-reinforced and geopolymer-stabilized clay soil. Construction and Building Materials 272(2021), 121914. https://doi.org/10.1016/j.conbuildmat.2020.121914
  • Zaimoglu, A. S. (2010). Freezing-thawing behavior of fine-grained soils reinforced with polypropylene fibers. Cold Regions Science and Technology, 60(1), 63-65. https://doi.org/10.1016/j.coldregions.2009.07.001

Changes in the consistency limits of clay soils with fiber reinforcement

Year 2024, Volume: 14 Issue: 2, 582 - 591, 15.06.2024
https://doi.org/10.17714/gumusfenbil.1425830

Abstract

There are many methods used to improve the engineering properties of clays. Fiber reinforcement method, which has become increasingly common in recent years, has also been added to these traditional methods. In this method, which has many advantages over traditional methods, fiber types such as basalt, glass and polypropylene are used and the engineering properties of the soils used in the filling can be improved. With the use of fiber in soil reinforcement being used intensively in engineering applications recently, there is also a significant increase in scientific studies on this subject. In the studies carried out so far using fiber reinforcement, changes in the strength and swelling properties of the soil have mostly been examined. However, there are very few studies examining the effect of fiber on the consistency limits of the soil. Since the change in consistency limits affects soil stability, it is very important to determine the changes that occur with fiber reinforcement. More scientific studies and databases are needed to understand the fiber-soil interactions, changes in the geotechnical properties of the soil and the mechanism of these changes as a result of fiber use. This study examined changes in liquid and plastic limit values by adding different amounts of basalt fiber to kaolin clay. For this purpose, the changes in the liquid limit, plastic limit and plasticity index values of the clay samples prepared by adding 24 mm long basalt fiber to kaolin clay at the rates of 0.25, 0.50, 1.00, 1.50, 2.00, 2.50 and % 3.00 were examined. According to the results of the study, with basalt fiber reinforcement, there was a decrease in the liquid limit values of kaolin clay and an increase in the plastic limit values. The basalt fiber ratio with the highest decrease in the liquid limit and the highest increase in the plastic limit in reinforced kaolin clay was determined as 2.00 %. As a result of these changes in liquid and plastic limit values, the plasticity index of kaolin clay decreased and due to this decrease, kaolin clay became more stable.

References

  • Al-Kaream, K. W.A., Fattah, M. Y. ve Hameedi, M. K. (2022). Compressibility and strength development of soft soil by polypropylene fiber. International Journal of GEOMATE, 22(93), 91-97.
  • Aslan Topçuoğlu, Y., & Gürocak, Z. (2023). Sodyum bentonit kilini güçlendirmede maksimum dayanım için optimum bazalt fiber oranının belirlenmesi. Dicle University Journal of Engineering/Dicle Üniversitesi Mühendislik Dergisi, 14(3). https://doi.org/10.24012/dumf.1346476
  • Aslan Topçuoğlu, Y., & Gürocak, Z. (2024). The effect of basalt fiber reinforcement at different ratios on the unconfined compressive strength of kaolin. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 13(1), 1-1. https://doi.org/10.28948/ngumuh.1352665
  • ASTM D4318-17e1, (2017). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM International, West Conshohocken, PA.
  • Amini, P. F., & Noorzad, R. (2018). Energy-based evaluation of liquefaction of fiber-reinforced sand using cyclic triaxial testing. Soil Dynamics and Earthquake Engineering, 104, 45-53. https://doi.org/10.1016/j.soildyn.2017.09.026
  • Aravalli, A. B., Hulagabali, A. M., Solanki, C. H., & Dodagoudar, G. R. (2017). Enhancement of index and engineering properties of expansive soil using chopped basalt fibers. Indian Geotechnical Conference 2017 GeoNEs, 14-16 December 2017, IIT Guwahati, India, 1-4.
  • Aishwarya, R., & Rachel, P. P. (2023). Comparative study on Atterberg limits of soil and basalt fiber composite as an eco-friendly construction material. Materials Today: Proceedings, 77, 563-567. https://doi.org/10.1016/j.matpr.2023.01.212
  • Bao, X., Huang, Y., Jin, Z., Xiao, X., Tang, W., Cui, H., & Chen, X. (2021). Experimental investigation on mechanical properties of clay soil reinforced with carbon fiber. Construction and Building Materials, 280, 1-9. https://doi.org/10.1016/j.conbuildmat.2021.122517
  • Baruah, H. (2015). Effect of glass fiber on red soil. International Journal of Advanced Technology in Engineering and Science, 3(1), 217-223. https://ijates.com/images/short_pdf/1447955068_211D.pdf
  • Behbahani, B. A., Sedaghatnezhad, H., & Changizi, F. (2016). Engineering properties of soils reinforced by recycled polyester fiber. Journal of Mechanical and Civil Engineering (IOSR-JMCE), 13(2), 01-07. 10.9790/1684-1302030107
  • Chaudhary, R. (2021). Enhancing the properties of soil by stabilization technique using basalt fiber, Civil Engineering Department, Delhi Technological Unıversity.
  • Cui, H., Jin, Z., Bao, X., Tang, W., & Dong, B. (2018). Effect of carbon fiber and nanosilica on shear properties of silty soil and the mechanisms. Construction and Building Materials, 189, 286-295. https://doi.org/10.1016/j.conbuildmat.2018.08.181
  • Diambra, A., Ibraim, E., Wood, D. M., & Russell, A. R. (2010). Fibre reinforced sands: experiments and modeling. Geotextiles & Geomembranes, 28(3), 238-250. https://doi.org/10.1016/j.geotexmem.2009.09.010
  • Edincliler, A., & Cagatay, A. (2013). Weak subgrade improvement with rubber fibre inclusions. Geosynthetics International, 20(1), 39-46. https://doi.org/10.1680/gein.12.00038
  • Eskişar, T., Karakan, E., & Altun, S. (2016). Effects of fibre reinforcement on liquefaction behaviour of poorly graded sands. Procedia Engineering, 161, 538-542. https://doi.org/10.1016/j.proeng.2016.08.688
  • Estabragh, A. R., Bordbar, A. T., & Javadi, A. A. (2011). Mechanical behavior of a clay soil reinforced with nylon fibers. Geotechnical and Geological Engineering, 29(5), 899-908. DOI 10.1007/s10706-011-9427-8
  • Gao, L., Hu, G., Xu, N., Fu, J., Xiang, C., & Yang, C. (2015). Experimental study on unconfined compressive strength of basalt fiber reinforced clay soil. Advances in Materials Science and Engineering, 2015, 1-8. https://doi.org/10.1155/2015/561293
  • Gürocak Z. ve Aslan Topçuoğlu Y. (2023). Bazalt fiber kullanımının düşük plastisiteli kilin serbest basınç dayanımı üzerindeki etkisi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 13(3), 688-701, https://doi.org/10.17714/gumusfenbil.1283148
  • Jamshaid, H., & Mishra, R. (2015). A green material from rock: basalt fiber-a review. The Journal of The Textile Institute, 107(7), 923-937. https://doi.org/10.1080/00405000.2015.1071940
  • Kale, R. Y., Dahake, N. D., Sahu, S. M., Gawande, G. A., Wailker, P. J., Patekar, V. R., & Pawar, C. R. (2020). Soil Stabilization by using Basalt Fibers. International Journal of Scientific Research & Engineering Trends, 6(3), 1931-1935.
  • Khudhair, A. H., Mahmood, R. A., & Jaber, M. A. (2022). Improving some geotechnical properties of cohesive soils by adding basalt fibers and portland cement in Basra Governorate-Southern Iraq. Design Engineering, 1, 1509-1522
  • Kinjal, S., Desai, A. K., & Solanki, C. H. (2012). Experimental study on the Atterberg limits of expansive soil reinforced with polyester triangular fibers. International Journal of Engineering Research and Applications, 2(4), 636-639.
  • MTA-Maden Tetkik Arama. (2024, Ocak, 5). https://www.mta.gov.tr/v3.0/sayfalar/bilgi-merkezi/maden-serisi/img/kaolen.pdf
  • Mukhtar, M., & Kumar, A. (2022). To Study the behavior of compacted soil using basalt fibers. International Journal of Innovative Research in Engineering & Management, 9(2), 360-366.
  • Orakoglu, M. E., & Liu, J. (2017). Effect of freeze-thaw cycles on triaxial strength properties of fiber-reinforced clayey soil. KSCE Journal of Civil Engineering, 21(6), 2128-2140. DOI 10.1007/s12205-017-0960-8
  • Pandit, V. M., Rohit, C., Tushar, K., Ayushi, C., Bhushan, G., & Deepali, C. (2018). Study of basalt fiber on compaction characteristics of black cotton soil. 6th International Conference on Recent Trends in Engineering & Technology (ICRTET), 850-853.
  • Pradhan, P. K., Kar, R. K., & Naik, A. (2012). Effect of random inclusion of polypropylene fibers on strength characteristics of cohesive soil. Geotechnical and Geological Engineering, 30, 15-25. DOI 10.1007/s10706-011-9445-6
  • Roustaei, M., Eslami, A. & Ghazavi, M. (2015). Effects of freeze-thaw cycles on a fiber reinforced fine grained soil in relation to geotechnical parameters. Cold Regions Science and Technology, 120, 127-137. https://doi.org/10.1016/j.coldregions.2015.09.011
  • Sujatha, E. R., Atchaya, P., Darshan, S. & Subhashini, S. (2021). Mechanical properties of glass fibre reinforced soil and its application as subgrade reinforcement. Road Materials and Pavement Design, 22(10), 2384-2395. https://doi.org/10.1080/14680629.2020.1746387
  • Sungur, A., Yazıcı, M.F., & Keskin, S. N. (2021). Bazalt lifi ile güçlendirilmiş killi zeminin mühendislik özellikleri üzerine deneysel araştırma. Avrupa Bilim ve Teknoloji Dergisi Özel Sayı, 28, 895-899. https://doi.org/10.31590/ejosat.1011881
  • Tang, C., Shi, B., Gao, W., Chen, F., & Cai, Y. (2007). Strength and mechanical behavior of short polypropylene fiber reinforced and cement stabilized clayey soil. Geotextiles and Geomembranes, 25(3), 194-202. https://doi.org/10.1016/j.geotexmem.2006.11.002
  • Valipour, M., Shourijeh, P.T., & Mohammadina, A. (2021). Application of recycled tire polymer fibers and glass fibers for clay reinforcement. Transportation Geotechnics, 27, 1-14. https://doi.org/10.1016/j.trgeo.2020.100474
  • Wang, S., Xue, Q., Ma, W., Zhao, K., & Wu, Z. (2021). Experimental study on mechanical properties of fiber-reinforced and geopolymer-stabilized clay soil. Construction and Building Materials 272(2021), 121914. https://doi.org/10.1016/j.conbuildmat.2020.121914
  • Zaimoglu, A. S. (2010). Freezing-thawing behavior of fine-grained soils reinforced with polypropylene fibers. Cold Regions Science and Technology, 60(1), 63-65. https://doi.org/10.1016/j.coldregions.2009.07.001
There are 34 citations in total.

Details

Primary Language Turkish
Subjects Applied Geology
Journal Section Articles
Authors

Yasemin Aslan Topçuoğlu 0000-0002-3135-5926

Zülfü Gürocak 0000-0002-1049-8346

Publication Date June 15, 2024
Submission Date January 26, 2024
Acceptance Date March 14, 2024
Published in Issue Year 2024 Volume: 14 Issue: 2

Cite

APA Aslan Topçuoğlu, Y., & Gürocak, Z. (2024). Fiber takviyesi ile killi zeminlerin kıvam limitlerinde meydana gelen değişimler. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(2), 582-591. https://doi.org/10.17714/gumusfenbil.1425830