Effectiveness of acetic and citric acid against Staphylococcus aureus contamination in parsley and dill
Year 2024,
Volume: 14 Issue: 3, 910 - 918, 15.09.2024
Asiye Usanmaz
,
Ahmet Erdoğan
,
Alper Baran
Abstract
Staphylococcal food intoxication from Staphylococcus aureus (S. aureus) species is an important food-borne disease that threatens public health in many countries. Products prepared with fresh vegetables that have not been heat treated and/or not sufficiently disinfected are particularly risky. In this study, the effects of various organic acid (acetic and citric acid) concentrations on S. aureus previously inoculated into parsley and dill vegetables were investigated at storage time of 0, 1., 3., 5, and 7 days. For this purpose, a total of 7 groups were formed: individually with 0.5% and 1.5% acetic and citric acid, as well as their combinations and control. The number of S. aureus was adjusted to 102 and 106 (log CFU/mL) numbers that known to produce toxins by spectrophotometric method. As a result of the study, acetic and citric acid were found to be more effective when combined in S. aureus inhibition. It was observed that this effect varies depending on the microbiological load, acid concentration and storage days of the vegetables. It was also determined that the organic acids used had a better effect on the parsley than the dill vegetable.
Supporting Institution
Ataturk University Unit of Scientific Projects Project no: FHD-2017-6175
Project Number
FHD-2017-6175
Thanks
This project was supported by Ataturk University Unit of Scientific Projects Project no: FHD-2017-6175, thus the authors thank Atatürk University for this financial support.
References
- Abolghait, S. K., Fathi, A. G., Youssef, F. M., & Algammal, A. M. (2020). Methicillin-resistant Staphylococcus aureus (MRSA) isolated from chicken meat and giblets often produces staphylococcal enterotoxin B (SEB) in non-refrigerated raw chicken livers. International Journal of Food Microbiology, 328, 108669. https://doi.org/10.1016/j.ijfoodmicro.2020.108669
- Al-Rousan, W. M., Olaimat, A. N., Osaili, T. M., Al-Nabulsi, A. A., Ajo, R. Y., & Holley, R. A. (2018). Use of acetic and citric acids to inhibit Escherichia coli O157:H7, Salmonella Typhimurium and Staphylococcus aureus in tabbouleh salad. Journal of Food Microbiology, 73, 61-66. https://doi.org/10.1016/j.fm.2018.01.001
- Ali-Shtayeh, M. S., Yaniv, Z., & Mahajna, J. (2000). Ethnobotanical survey in the Palestinian area: a classification of the healing potential of medicinal plants. Journal of Ethnopharmacology, 73(1-2), 221-232. https://doi.org/10.1016/s0378-8741(00)00316-0
- Bermúdez-Aguirre, D., & Barbosa-Cánovas, G. V. (2013). Disinfection of selected vegetables under nonthermal treatments: Chlorine, acid citric, ultraviolet light and ozone. Food Control, 29(1), 82-90. https://doi.org/10.1016/j.foodcont.2012.05.073
- Dandie, C. E., Ogunniyi, A. D., Ferro, S., Hall, B., Drigo, B., Chow, C. W. K., Venter, H., Myers, B., Deo, P., Donner, E., & Lombi, E. (2020). Disinfection options for irrigation water: Reducing the risk of fresh produce contamination with human pathogens. Critical Reviews in Environmental Science and Technology, 50(20), 2144-2174. https://doi.org/10.1080/10643389.2019.1704172
- Červenka, L., Malíková, Z., Zachová, I., & Vytřasová, J. (2004). The effect of acetic acid, citric acid, and trisodium citrate in combination with different levels of water activity on the growth of Arcobacter butzleri in culture. Folia microbiologica, 49(1), 8-12. https://doi.org/10.1007/BF02931638
- Deng, L. Z., Mujumdar, A. S., Pan, Z., Vidyarthi, S. K., Xu, J., Zielinska, M., & Xiao, H. W. (2020). Emerging chemical and physical disinfection technologies of fruits and vegetables: a comprehensive review. Critical reviews in food science and nutrition, 60(15), 2481-2508. https://doi.org/10.1080/10408398.2019.1649633
- El Astal, Z. Y., Ashour, A. A., & Kerrit, A. (2003). Antimicrobial activity of some medicinal plant extracts. West African Journal of Pharmacology and Drug Research, 19, 16-21. https://doi.org/10.4314/wajpdr.v19i1.14727
- Ijabadeniyi, O. A., Mbedla, A., & Ajayeoba, T. A. (2020). Microbiological quality and antimicrobial efficacy of combined oregano essential oil and acetic acid on fresh lettuce. Italian Journal of Food Science, 32(2), 399-409. https://doi.org/10.14674/IJFS-1566
- Islam, M. A., Amin, S. M. N., Brown, C. L., Juraimi, A. S., Uddin, M. K., & Arshad, A. (2022). Determination of the most efficient household technique for the reduction of pesticide residues from raw fish muscles. Foods, 11(9), 1254. https://doi.org/10.3390/foods11091254
- Ji, Q.-Y., Wang, W., Yan, H., Qu, H., Liu, Y., Qian, Y., & Gu, R. (2023). The effect of different organic acids and their combination on the cell barrier and biofilm of Escherichia coli. Foods, 12(16), 3011. https://doi.org/10.3390/foods12163011
- Käferstein, F., & Abdussalam, M. (1999). Food safety in the 21st century. Bulletin of the World Health Organization, 77(4), 347.
- Karam, L., Ghonim, F., Dahdah, P., Attieh, G., Al-Ahmad, S., Ghonim, S., & Osaili, T. (2023). Beyond chemical preservatives: enhancing the shelf-life and sensory quality of ready-to-eat (rte) hummus with vinegar and other natural antimicrobials. Foods, 12(15), 2947. https://doi.org/10.3390/foods12152947
- Lehel, J., Yaucat-Guendi, R., Darnay, L., Palotás, P., & Laczay, P. (2021). Possible food safety hazards of ready-to-eat raw fish containing product (sushi, sashimi). Critical Reviews in Food Science and Nutrition, 61(5), 867-888. https://doi.org/10.1080/10408398.2020.1749024
- Lepaus, B. M., Rocha, J. S., & Sao Jose, J. F. B. d. (2020). Organic acids and hydrogen peroxide can replace chlorinated compounds as sanitizers on strawberries, cucumbers and rocket leaves. Food Science and Technology, 40(Suppl. 1), 242-249. https://doi.org/10.1590/fst.09519
- Lopes, S. M., da Silva, D. C., & Tondo, E. C. (2022). Bactericidal effect of marinades on meats against different pathogens: a review. Critical Reviews in Food Science and Nutrition, 62(27), 7650-7658. https://doi.org/10.1080/10408398.2021.1916734
- Mendoza, I. C., Luna, E. O., Pozo, M. D., Vásquez, M. V., Montoya, D. C., Moran, G. C., Romero, L. G., Yepez, X., Slazar, R., Romero-Pena, M., & León, J. C. (2022). Conventional and non-conventional disinfection methods to prevent microbial contamination in minimally processed fruits and vegetables. LWT- Food Science and Technology, 165, 113714. https://doi.org/10.1016/j.lwt.2022.113714
- Mols, M., & Abee, T. (2011). Bacillus cereus responses to acid stress. Environmental microbiology, 13(11), 2835-2843. https://doi.org/10.1111/j.1462-2920.2011.02490.x
- Mostafidi, M., Sanjabi, M. R., Shirkhan, F., & Zahedi, M. T. (2020). A review of recent trends in the development of the microbial safety of fruits and vegetables. Trends in Food Science & Technology, 103, 321-332. https://doi.org/10.1016/j.tifs.2020.07.009
- Olaimat, A. N., Al-Nabulsi, A. A., Osaili, T. M., Al-Holy, M., Ayyash, M. M., Mehyar, G. F., Jaradat, Z. W., & Ghoush, M. A. (2017). Survival and inhibition of Staphylococcus aureus in commercial and hydrated tahini using acetic and citric acids. Food Control, 77, 179-186. https://doi.org/10.1016/j.foodcont.2017.02.022
- Onyeaka, H., Ghosh, S., Obileke, K., Miri, T., Odeyemi, O. A., Nwaiwu, O., & Tamasiga, P. (2024). Preventing chemical contaminants in food: Challenges and prospects for safe and sustainable food production. Food Control, 155, 110040. https://doi.org/10.1016/j.foodcont.2023.110040
- Osaili, T. M., Al-Nabulsi, A. A., Jaradat, Z., Shaker, R. R., Alomari, D. Z., Al-Dabbas, M. M., Alaboudi, A. R., Al-Natour, M. Q., & Holley, R. A. (2015). Survival and growth of Salmonella Typhimurium, Escherichia coli O157:H7 and Staphylococcus aureus in eggplant dip during storage. International Journal of Food Microbiology, 198, 37-42. https://doi.org/10.1016/j.ijfoodmicro.2014.12.025
- Otto, A. S., Davis, B., Wakefield, K., Clarkson, J. J., & Jeffrey Inman, J. (2020). Consumer strategies to ımprove the efficacy of posted calorie ınformation: how provincial norms nudge consumers to healthier consumption. Journal of Consumer Affairs, 54(1), 311-341. https://doi.org/10.1111/joca.12272
- Parish, M. E., Beuchat, L. R., Suslow, T. V., Harris, L. J., Garrett, E. H., Farber, J. N., & Busta, F. F. (2003). Methods to reduce/eliminate pathogens from fresh and fresh-cut produce. Comprehensive Reviews in Food Science and Food Safety, 2(s1), 161-173. https://doi.org/10.1111/j.1541-4337.2003.tb00033.x
- Park, K. M., Baek, M., Kim, H. J., Kim, B. S., & Koo, M. (2013). Susceptibility of foodborne pathogens isolated from fresh-cut products and organic vegetable to organic acids and sanitizers. Journal of Food Hygiene and Safety, 28(3), 227-233. http://dx.doi.org/10.13103/JFHS.2013.28.3.227
- Petróczki, F., Woode, B. K., Törős, G., Nagy, N., Béri, B., & Peles, F. (2018). Microbiological status of bulk tank milk and different flavored gomolya cheeses produced by a milk producing and processing plant. Acta Agraria Debreceniensis, 75, 73-78. https://doi.org/10.34101/actaagrar/75/1649
- Rahman, M., Alam, M.-U., Luies, S. K., Kamal, A., Ferdous, S., Lin, A., Sharior, F., Khan, R., Rahman, Z., Parvez, S. M., Amin, N., Hasan, R., Tadesse, B. T., Taneja., N., Islam, M. A., & Ercumen, A. (2022). Contamination of Fresh Produce with Antibiotic-Resistant Bacteria and Associated Risks to Human Health: A Scoping Review. International Journal of Environmental Research and Public Health, 19(1), 360. https://doi.org/10.3390/ijerph19010360
- Saǧdιç, O. (2003). Sensitivity of four pathogenic bacteria to Turkish thyme and oregano hydrosols. LWT - Food Science and Technology, 36(5), 467-473. https://doi.org/10.1016/S0023-6438(03)00037-9
- Tang, J., Zhang, R., Chen, J., Zhao, Y., Tang, C., Yue, H., Li, J., Wang, Q., & Shi, H. (2015). Incidence and characterization of Staphylococcus aureus strains isolated from food markets. Annals of microbiology, 65, 279-286. https://doi.org/10.1007/s13213-014-0859-2
- Turhan, E. U., Polat, S., Erginkaya, Z., & Konuray, G. (2022). Investigation of synergistic antibacterial effect of organic acids and ultrasound against pathogen biofilms on lettuce. Food Bioscience, 47, 101643. https://doi.org/10.1016/j.fbio.2022.101643
- Valiolahi, M., Najafi, M. A., Eskandani, M. A., & Rahnama, M. (2019). Effects of organic acid alone and in combination with H2O2 and NaCl on Escherichia coli O157:H7: An evaluation of antioxidant retention and overall acceptability in Basil leaves (Ocimum basilicum). International Journal of Food Microbiology, 292, 56-63. https://doi.org/10.1016/j.ijfoodmicro.2018.12.010
- Wu, F. M., Doyle, M. P., Beuchat, L. R., Wells, J. G., Mintz, E. D., & Swaminathan, B. (2000). Fate of Shigella sonnei on parsley and methods of disinfection. Journal of Food Protection, 63(5), 568-572. https://doi.org/10.4315/0362-028x-63.5.568
- Wu, W., Zhang, J., Li, T., Hu, Z., Huang, S., Lin, M., Xie, Y., & Yu, Z. (2024). Antimicrobial effect of plasma-activated water combined with tartaric acid against Staphylococcus aureus and its application on fresh-cut asparagus lettuce. Food Bioscience, 104293. https://doi.org/10.1016/j.fbio.2024.104293
Maydanoz ve dereotunda Staphylococcus aureus kontaminasyonuna karşı asetik ve sitrik asitin etkinliği
Year 2024,
Volume: 14 Issue: 3, 910 - 918, 15.09.2024
Asiye Usanmaz
,
Ahmet Erdoğan
,
Alper Baran
Abstract
Staphylococcus aureus (S. aureus) türlerinden kaynaklı stafilokokal gıda intoksikasyonu birçok ülkede halk sağlığını tehdit eden gıda kaynaklı önemli bir hastalıktır. Isıl işlem görmemiş ve/veya yeterince dezenfekte edilmemiş taze sebzelerle hazırlanan ürünler özellikle risklidir. Bu çalışmada, daha önce maydanoz ve dereotu sebzelerine inokule edilen S. aureus'un 0., 1., 3., 5. ve 7. depolama sürelerinde çeşitli organik asit (asetik ve sitrik asit) konsantrasyonlarının etkileri araştırılmıştır. Bu amaçla toplam 7 grup oluşturulmuştur: ayrı ayrı %0,5 ve %1,5 asetik ve sitrik asit ile bunların kombinasyonları ve kontrol. S. aureus sayısı spektrofotometrik yöntemle 102 ve toksin ürettiği bilinen 106 (log KOB/mL) sayısına ayarlanmıştır. Çalışma sonucunda asetik ve sitrik asitin S. aureus inhibisyonunda kombinasyon halinde kullanıldığında daha etkili olduğu bulunmuştur. Bu etkinin sebzelerin mikrobiyolojik yüküne, asit konsantrasyonuna ve saklama günlerine bağlı olarak değiştiği görülmüştür. Ayrıca kullanılan organik asitlerin maydanoz sebzesine dereotu sebzesinden daha iyi etki ettiği belirlenmiştir.
Supporting Institution
Ataturk University Unit of Scientific Projects Project no: FHD-2017-6175
Project Number
FHD-2017-6175
Thanks
This project was supported by Ataturk University Unit of Scientific Projects Project no: FHD-2017-6175, thus the authors thank Atatürk University for this financial support.
References
- Abolghait, S. K., Fathi, A. G., Youssef, F. M., & Algammal, A. M. (2020). Methicillin-resistant Staphylococcus aureus (MRSA) isolated from chicken meat and giblets often produces staphylococcal enterotoxin B (SEB) in non-refrigerated raw chicken livers. International Journal of Food Microbiology, 328, 108669. https://doi.org/10.1016/j.ijfoodmicro.2020.108669
- Al-Rousan, W. M., Olaimat, A. N., Osaili, T. M., Al-Nabulsi, A. A., Ajo, R. Y., & Holley, R. A. (2018). Use of acetic and citric acids to inhibit Escherichia coli O157:H7, Salmonella Typhimurium and Staphylococcus aureus in tabbouleh salad. Journal of Food Microbiology, 73, 61-66. https://doi.org/10.1016/j.fm.2018.01.001
- Ali-Shtayeh, M. S., Yaniv, Z., & Mahajna, J. (2000). Ethnobotanical survey in the Palestinian area: a classification of the healing potential of medicinal plants. Journal of Ethnopharmacology, 73(1-2), 221-232. https://doi.org/10.1016/s0378-8741(00)00316-0
- Bermúdez-Aguirre, D., & Barbosa-Cánovas, G. V. (2013). Disinfection of selected vegetables under nonthermal treatments: Chlorine, acid citric, ultraviolet light and ozone. Food Control, 29(1), 82-90. https://doi.org/10.1016/j.foodcont.2012.05.073
- Dandie, C. E., Ogunniyi, A. D., Ferro, S., Hall, B., Drigo, B., Chow, C. W. K., Venter, H., Myers, B., Deo, P., Donner, E., & Lombi, E. (2020). Disinfection options for irrigation water: Reducing the risk of fresh produce contamination with human pathogens. Critical Reviews in Environmental Science and Technology, 50(20), 2144-2174. https://doi.org/10.1080/10643389.2019.1704172
- Červenka, L., Malíková, Z., Zachová, I., & Vytřasová, J. (2004). The effect of acetic acid, citric acid, and trisodium citrate in combination with different levels of water activity on the growth of Arcobacter butzleri in culture. Folia microbiologica, 49(1), 8-12. https://doi.org/10.1007/BF02931638
- Deng, L. Z., Mujumdar, A. S., Pan, Z., Vidyarthi, S. K., Xu, J., Zielinska, M., & Xiao, H. W. (2020). Emerging chemical and physical disinfection technologies of fruits and vegetables: a comprehensive review. Critical reviews in food science and nutrition, 60(15), 2481-2508. https://doi.org/10.1080/10408398.2019.1649633
- El Astal, Z. Y., Ashour, A. A., & Kerrit, A. (2003). Antimicrobial activity of some medicinal plant extracts. West African Journal of Pharmacology and Drug Research, 19, 16-21. https://doi.org/10.4314/wajpdr.v19i1.14727
- Ijabadeniyi, O. A., Mbedla, A., & Ajayeoba, T. A. (2020). Microbiological quality and antimicrobial efficacy of combined oregano essential oil and acetic acid on fresh lettuce. Italian Journal of Food Science, 32(2), 399-409. https://doi.org/10.14674/IJFS-1566
- Islam, M. A., Amin, S. M. N., Brown, C. L., Juraimi, A. S., Uddin, M. K., & Arshad, A. (2022). Determination of the most efficient household technique for the reduction of pesticide residues from raw fish muscles. Foods, 11(9), 1254. https://doi.org/10.3390/foods11091254
- Ji, Q.-Y., Wang, W., Yan, H., Qu, H., Liu, Y., Qian, Y., & Gu, R. (2023). The effect of different organic acids and their combination on the cell barrier and biofilm of Escherichia coli. Foods, 12(16), 3011. https://doi.org/10.3390/foods12163011
- Käferstein, F., & Abdussalam, M. (1999). Food safety in the 21st century. Bulletin of the World Health Organization, 77(4), 347.
- Karam, L., Ghonim, F., Dahdah, P., Attieh, G., Al-Ahmad, S., Ghonim, S., & Osaili, T. (2023). Beyond chemical preservatives: enhancing the shelf-life and sensory quality of ready-to-eat (rte) hummus with vinegar and other natural antimicrobials. Foods, 12(15), 2947. https://doi.org/10.3390/foods12152947
- Lehel, J., Yaucat-Guendi, R., Darnay, L., Palotás, P., & Laczay, P. (2021). Possible food safety hazards of ready-to-eat raw fish containing product (sushi, sashimi). Critical Reviews in Food Science and Nutrition, 61(5), 867-888. https://doi.org/10.1080/10408398.2020.1749024
- Lepaus, B. M., Rocha, J. S., & Sao Jose, J. F. B. d. (2020). Organic acids and hydrogen peroxide can replace chlorinated compounds as sanitizers on strawberries, cucumbers and rocket leaves. Food Science and Technology, 40(Suppl. 1), 242-249. https://doi.org/10.1590/fst.09519
- Lopes, S. M., da Silva, D. C., & Tondo, E. C. (2022). Bactericidal effect of marinades on meats against different pathogens: a review. Critical Reviews in Food Science and Nutrition, 62(27), 7650-7658. https://doi.org/10.1080/10408398.2021.1916734
- Mendoza, I. C., Luna, E. O., Pozo, M. D., Vásquez, M. V., Montoya, D. C., Moran, G. C., Romero, L. G., Yepez, X., Slazar, R., Romero-Pena, M., & León, J. C. (2022). Conventional and non-conventional disinfection methods to prevent microbial contamination in minimally processed fruits and vegetables. LWT- Food Science and Technology, 165, 113714. https://doi.org/10.1016/j.lwt.2022.113714
- Mols, M., & Abee, T. (2011). Bacillus cereus responses to acid stress. Environmental microbiology, 13(11), 2835-2843. https://doi.org/10.1111/j.1462-2920.2011.02490.x
- Mostafidi, M., Sanjabi, M. R., Shirkhan, F., & Zahedi, M. T. (2020). A review of recent trends in the development of the microbial safety of fruits and vegetables. Trends in Food Science & Technology, 103, 321-332. https://doi.org/10.1016/j.tifs.2020.07.009
- Olaimat, A. N., Al-Nabulsi, A. A., Osaili, T. M., Al-Holy, M., Ayyash, M. M., Mehyar, G. F., Jaradat, Z. W., & Ghoush, M. A. (2017). Survival and inhibition of Staphylococcus aureus in commercial and hydrated tahini using acetic and citric acids. Food Control, 77, 179-186. https://doi.org/10.1016/j.foodcont.2017.02.022
- Onyeaka, H., Ghosh, S., Obileke, K., Miri, T., Odeyemi, O. A., Nwaiwu, O., & Tamasiga, P. (2024). Preventing chemical contaminants in food: Challenges and prospects for safe and sustainable food production. Food Control, 155, 110040. https://doi.org/10.1016/j.foodcont.2023.110040
- Osaili, T. M., Al-Nabulsi, A. A., Jaradat, Z., Shaker, R. R., Alomari, D. Z., Al-Dabbas, M. M., Alaboudi, A. R., Al-Natour, M. Q., & Holley, R. A. (2015). Survival and growth of Salmonella Typhimurium, Escherichia coli O157:H7 and Staphylococcus aureus in eggplant dip during storage. International Journal of Food Microbiology, 198, 37-42. https://doi.org/10.1016/j.ijfoodmicro.2014.12.025
- Otto, A. S., Davis, B., Wakefield, K., Clarkson, J. J., & Jeffrey Inman, J. (2020). Consumer strategies to ımprove the efficacy of posted calorie ınformation: how provincial norms nudge consumers to healthier consumption. Journal of Consumer Affairs, 54(1), 311-341. https://doi.org/10.1111/joca.12272
- Parish, M. E., Beuchat, L. R., Suslow, T. V., Harris, L. J., Garrett, E. H., Farber, J. N., & Busta, F. F. (2003). Methods to reduce/eliminate pathogens from fresh and fresh-cut produce. Comprehensive Reviews in Food Science and Food Safety, 2(s1), 161-173. https://doi.org/10.1111/j.1541-4337.2003.tb00033.x
- Park, K. M., Baek, M., Kim, H. J., Kim, B. S., & Koo, M. (2013). Susceptibility of foodborne pathogens isolated from fresh-cut products and organic vegetable to organic acids and sanitizers. Journal of Food Hygiene and Safety, 28(3), 227-233. http://dx.doi.org/10.13103/JFHS.2013.28.3.227
- Petróczki, F., Woode, B. K., Törős, G., Nagy, N., Béri, B., & Peles, F. (2018). Microbiological status of bulk tank milk and different flavored gomolya cheeses produced by a milk producing and processing plant. Acta Agraria Debreceniensis, 75, 73-78. https://doi.org/10.34101/actaagrar/75/1649
- Rahman, M., Alam, M.-U., Luies, S. K., Kamal, A., Ferdous, S., Lin, A., Sharior, F., Khan, R., Rahman, Z., Parvez, S. M., Amin, N., Hasan, R., Tadesse, B. T., Taneja., N., Islam, M. A., & Ercumen, A. (2022). Contamination of Fresh Produce with Antibiotic-Resistant Bacteria and Associated Risks to Human Health: A Scoping Review. International Journal of Environmental Research and Public Health, 19(1), 360. https://doi.org/10.3390/ijerph19010360
- Saǧdιç, O. (2003). Sensitivity of four pathogenic bacteria to Turkish thyme and oregano hydrosols. LWT - Food Science and Technology, 36(5), 467-473. https://doi.org/10.1016/S0023-6438(03)00037-9
- Tang, J., Zhang, R., Chen, J., Zhao, Y., Tang, C., Yue, H., Li, J., Wang, Q., & Shi, H. (2015). Incidence and characterization of Staphylococcus aureus strains isolated from food markets. Annals of microbiology, 65, 279-286. https://doi.org/10.1007/s13213-014-0859-2
- Turhan, E. U., Polat, S., Erginkaya, Z., & Konuray, G. (2022). Investigation of synergistic antibacterial effect of organic acids and ultrasound against pathogen biofilms on lettuce. Food Bioscience, 47, 101643. https://doi.org/10.1016/j.fbio.2022.101643
- Valiolahi, M., Najafi, M. A., Eskandani, M. A., & Rahnama, M. (2019). Effects of organic acid alone and in combination with H2O2 and NaCl on Escherichia coli O157:H7: An evaluation of antioxidant retention and overall acceptability in Basil leaves (Ocimum basilicum). International Journal of Food Microbiology, 292, 56-63. https://doi.org/10.1016/j.ijfoodmicro.2018.12.010
- Wu, F. M., Doyle, M. P., Beuchat, L. R., Wells, J. G., Mintz, E. D., & Swaminathan, B. (2000). Fate of Shigella sonnei on parsley and methods of disinfection. Journal of Food Protection, 63(5), 568-572. https://doi.org/10.4315/0362-028x-63.5.568
- Wu, W., Zhang, J., Li, T., Hu, Z., Huang, S., Lin, M., Xie, Y., & Yu, Z. (2024). Antimicrobial effect of plasma-activated water combined with tartaric acid against Staphylococcus aureus and its application on fresh-cut asparagus lettuce. Food Bioscience, 104293. https://doi.org/10.1016/j.fbio.2024.104293