Research Article
BibTex RIS Cite

Thermo-physical evaluation of hybrid-nanofluids zeotropic mixtures in a vapor compression refrigeration system

Year 2024, Volume: 14 Issue: 4, 1021 - 1038, 15.12.2024
https://doi.org/10.17714/gumusfenbil.1224486

Abstract

This research involves an experimental study of vapour compression refrigeration system (VCRS) with hybrid-nanofluids zeotropic blends of (23%-R32/25%-R125/52%-R134a) in the ratio of (0.03 - 0.15 %.Vol.) with elven samples as thus: 001, 010, 100, 011, 111, 211, 121, 112, 221, 212 and 122 gram). A morphology characterization test was conducted using scanning electron microscope (SEM) and X-ray Diffraction (XRD) amongst the selected ratios using compressor work efficiency, power consummation rate and Coefficient of performance (COP) as the core enhancement parameters. The most favorable blend produced the optimum COP in three different fraction ratios (011, 111 and112). The outcome indicated that thermo-physical and vapor compression properties of hybrid-nanofluids zeotropic (011) zero gram-TiO2, 7.5g-Al2O3/CuO; (112) 3.75 g-TiO2/Al2O3, 7.5 g-/CuO and (111) 5.0g-TiO2/Al2O3/CuO produced the best optimum performance of 3.1%, 1.41% and 1.21% respectively. The COP was found to be highest at (011) blend by about 3.1% at refrigerant temperature of -7 oC. The maximum compressor power coefficient, volumetric cooling capacity and TEGWI were found to increase by 13.51%, 5.78 % and 1.06 kg/sec CO2. The study also revealed that nanoparticles mixed in the base fluid increased the heat transfer coefficient even with a smaller particle portion of 0.003%, with optimum improvement of 0.0075 Vol % application. The calculated values of exergy destruction in each component at various % fractions are presented in Appendix I. Outcome of the study confirmed that hybrid-nanofluids zeotropic blend is energy efficient and environmentally friendly with good characteristics healthier than CFCs and HCFCs, and can offer healthier compressor/refrigerator working fluid substitute to be adopted in VCRS and air conditioning operations.

References

  • Ajayi, O. O., Ukasoanya, D. E., Ogbonnaya, M., Salawu, E. Y., Okokpujie, I. P., Akinlabi, S. A., Akinlabi, E. T., & Owoeyed, F. T. (2019). Investigation of the Effect of R134a/Al2O3- Nanofluid on the Performance of a Domestic Vapour Compression Refrigeration System. Procedia Manufacturing, 35, 112-117. https://doi.org/10.1016/j.promfg.2019.05.012
  • Akanimo, E, U., Ikpe, A. E., & Ikpe, E. O. (2022). Exergy Performance Assessment of Hybridize-Nanofluids Zeotropic Blend as Refrigerant Replacement in Vapor Compression Refrigeration System. III International Siirt Conference on Scientific Research, (pp. 947-958), November 18-19, Siirt University, Turkey.
  • Akilu, S., Baheta, A. T., & Sharma, K. V. (2018). Experimental measurements of thermal conductivity and viscosity of ethylene glycol-based hybrid nanofluid with TiO2-CuO/C inclusions. Journal of Molecular Liquid, 246, 396-405. https://doi.org/10.1016/j.molliq.2017.09.017
  • Anand, S., & Tyagi, S. K. (2020). Exergy analysis and experimental study of a vapour compression refrigeration cycle. Journal of Thermal Analysis and Calorimetry, 110, 961-971. https://doi.org/10.1007/s10973-011-1904-z
  • Asadi A, Asadi M, Rezaei M, Siahmargoi, M., & Asadi F. (2016). The effect of temperature and solid concentration on dynamic viscosity of MWCNT/MgO (20-80)-SAE50 hybrid nano- lubricant and proposing a new correlation: an experimental study. International Communications in Heat and Mass Transfer, 78, 48-53. https://doi.org/10.1016/j.icheatmasstransfer.2016.08.021
  • Babarinde, T. O., Ohunakin, O. S., Adelekan, D. S., Aasa, S. A., & Oyedepo, S. O. (2015). Experimental study on LPG and R134a refrigerants in vapor compression refrigeration. International Journal of Energy for a Clean Environment, 16(1-4), 71-80. http://dx.doi.org/10.1615/InterJEnerCleanEnv.2016015644.
  • Baskaran, A. K., & Mathews, P., (2015). Investigation of new eco-friendly refrigerant mixture alternative to R134a in domestic refrigerator. Australian Journal of Basic and Applied Sciences, 9(5), 297-306.
  • Bhattad, A., Sarkar, J., & Ghosh, P. (2018). Improving the performance of refrigeration systems by using nanofluids: A comprehensive review. Renewable and Sustainable Energy Reviews, 82(3), 3656-3669. http://dx.doi.org/10.1016/j.rser.2017.10.097.
  • Chaudhari, C. S., & Sapali S. N. (2017). Performance investigation of Natural Refrigerant R290 as a substitute to R22 in Refrigeration Systems. International conference on RAAR Energy Procedia, 109, 346-352. https://doi.org/10.1016/j.egypro.2017.03.084
  • Flores, R. A., Aviña-Jiménez, H. M., González, E. P., & González-Uribe, L. A. (2019). Aerothermodynamic design of 10 kW radial inflow turbine for an organic flashing cycle using low-enthalpy resources. Journal of Cleaner Production, 251, 119713. http://doi.org/10.1016/j.jclepro.2019.119713
  • Haque, M. E., Bakar, R. A., Kadirgama, K., Noor, M. M., & Shakaib, M. (2016). Performance of a domestic refrigerator using nanoparticles-based polyolester oil lubricant. Journal of Mechanical Engineering and Sciences, 10(1), 1778-1791. http://dx.doi.org/10.15282/jmes.10.1.2016.3.0171
  • Haque, M. E., Bakar, R. A., Kadirgama, K., Noor, M. M., & Shakaib, M. (2016). Performance of a domestic refrigerator using nanoparticles-based Polyolester oil lubricant. Journal of Mechanical Engineering and Sciences, 10(1), 1778-1791. https://doi.org/10.15282/jmes.10.1.2016.3.0171
  • Henderson, K., Park, Y., Liu, L., & Jacobi, A. M. (2010). Flow boiling heat transfer of R134a-based nanofluids in a horizontal tube. International Journal of Heat and Mass Transfer, 53(5-6), 944-951. https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.026
  • Imre, A., Kustán, R., & Groniewsky, A. (2019). Thermodynamic selection of the optimal Working fluid for organi Rankine cycles. Energies, 12(10), 20-28. https://doi.org/10.3390/en12102028
  • Joybari, M. M., Hatamipour, M. S., Rahimi, A., & Modarres, F. G. (2013). Exergy analysis and optimization of R600a as a replacement of R134a in a domestic refrigerator system. International Journal of Refrigeration, 36(4), 1233-1242. https://doi.org/10.1016/j.ijrefrig.2013.02.012
  • Joybari, M. M., Seddegh, S., Wang, X., & Haghighat, F. (2019). Experimental investigation of multiple tube heat transfer enhancement in a vertical cylindrical latent heat thermal energy storage system. Renewable Energy, 140, 234-244. http://doi.org/10.1016/j.renene.2019.03.037
  • König-Haagen, A., Höhlein, S., & Brüggemann, D. (2020). Detailed exergetic analysis of a packed bed thermal energy storage unit in combination with an Organic Rankine Cycle. Applied Thermal Engineering, 165, 114583. https://doi.org/10.1016/j.applthermaleng.2019.114583
  • Krauzina, M. T., Bozhko, A. A., Krauzin, P. V., & Suslov, S. A. (2017). Complex behavior of a nanofluid near thermal convection onset: Its nature and features. International Journal of Heat and Mass Transfer, 104, 688-692. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.106
  • Krishna, S., Gobinath, N., Sajith, N. V., Sumitesh, D., & Sobhan, C. B. (2012). Application of TiO2 nanoparticles as a lubricant-additive for vapour compression refrigeration systems: An experimental investigation. International Journal of Refrigeration, 35(7), 243-283. https://doi.org/10.1016/j.ijrefrig.2012.07.002
  • Liu, Z. H., & Zhu, Q. Z. (2011). Application of aqueous Nanofluids in a horizontal mesh heat pipe. Energy Conversion and Management, 52(1), 292-300. https://doi.org/10.1016/j.enconman.2010.07.001
  • Maheshwary, P. B., Handa, C. C., & Nemade, K. R. (2018). Effect of Shape on Thermophysical and Heat Transfer Properties of ZnO/R-134a Nanorefrigerant. Materials Today: Proceedings, 5(1), 1635-1639. https://doi.org/10.1016/j.matpr.2017.11.257
  • Nabil, M. F., Azmi, W. H., Hamid, K. A., Zawawi, N., Priyandoko, G., & Mamat, R. (2017). Thermophysical properties of hybrid nanofluids and hybrid nanolubricants: A comprehensive review on performance. International Communications in Heat and Mass Transfer, 83, 30-39. https://doi.org/10.1016/j.icheatmasstransfer.2017.03.008
  • Nayak, A. K., Hagishima, A., & Tanimoto, J. (2020). A simplified numerical model for evaporative cooling by water spray over roof surfaces. Applied Thermal Engineering, 165, 114514. https://doi.org/10.1016/j.applthermaleng.2019.114514
  • Paula de, C. H., Duarte, W. M., Rocha T. T. M., Oliveria R. N., & Maia A. A. T. (2020). Optimal Design and Environmental, Energy and Exergy Analysis of a VCR System using R290, R1234yf, and R744 as Alternatives to replace R134a. International Journal of Refrigeration, 113, 10-20. http://dx.doi.org/10.1016/j.ijrefrig.2020.01.012
  • Rasti, M., Aghamiri, S., & Hatamipour, M. S. (2013). Energy efficiency enhancement of a domestic refrigerator using R436A and R600a as alternative refrigerants to R134a. International Journal of Thermal Sciences, 74, 86-94. https://doi.org/10.1016/j.ijthermalsci.2013.07.009
  • Royal, M. V., Ahamed, M., Kumar, R., & Krishna, H. (2019). Experimental Study on Al2O3-R134a Nano Refrigerant in Refrigeration System. Journal of Emerging Technologies and Innovative Research, 6(5), 161-166.
  • Sabareesh, R. K., Gobinath, N., Sajith, V., Das, S., & Sobhan, C. B. (2012). Application of TiO2 nanoparticles as a lubricant-additive for vapor compression refrigeration systems-An experimental investigation. International journal of refrigeration, 35(7), 1989-1996. https://doi.org/10.1016/j.ijrefrig.2012.07.002
  • Sarkar, J., Bhattacharya, S., Lal, A. (2013). Selection of suitable natural refrigerants pairs for cascade refrigeration system. Proceedings of the Institution of Mechanical Engineers Part A: Journal of Power and Energy, 227(5), 612-622. https://doi.org/10.1177/0957650913487730
  • Selvam, C., Lal, D. M., & Harish, S. (2016). Thermophysical properties of ethylene glycol-water mixture containing silver. International Journal of Research in Engineering and Innovation, 30, 1271-1279. https://doi.org/10.1007/s12206-016-0231-5
  • Yang, Z., Liu, B., & Zhao, H. (2004). Experimental study of the inert effect of R134a and R227ea on explosion limits of the flammable refrigerants. Experimental Thermal and Fluid Science, 28(6), 557-563. https://doi.org/10.1016/j.expthermflusci.2003.06.005
  • Zhang, X., Wang, F., Fan, X., Duan, H., & Zhu, F. (2017). An investigation of a heat pump system using CO2/propane mixture as a working fluid. International Journal of Green Energy, 14(1), 105-111. https://doi.org/10.1080/15435075.2016.1253577
  • Zhelezny, V. P., Lukianov, N. N., Khliyeva, O. Y., Nikulina, A. S., & Melnyk, A. V. (2017). A complex investigation of the nanofluids R600a-mineral oil-Al2O3 and R600a-mineral oil-TiO2. Thermophysical properties. International Journal of Refrigeration, 74, 488-504. https://doi.org/10.1016/j.ijrefrig.2016.11.008

Buhar sıkıştırmalı soğutma sistemindeki hibrit-nanoakışkan zeotropik karışımların termo-fiziksel değerlendirilmesi

Year 2024, Volume: 14 Issue: 4, 1021 - 1038, 15.12.2024
https://doi.org/10.17714/gumusfenbil.1224486

Abstract

Bu araştırma, (0.03 - 0.15 %.Vol.) oranında (%23-R32/%25-R125/%52-R134a) hibrit-nanoakışkan zeotropik karışımlara sahip buhar sıkıştırmalı soğutma sisteminin (VCRS) deneysel bir çalışmasını içermektedir. Vol.) elf numuneleri şu şekildedir: 001, 010, 100, 011, 111, 211, 121, 112, 221, 212 ve 122 gram). Temel geliştirme parametreleri olarak kompresör iş verimliliği, güç tüketim oranı ve performans katsayısı (COP) kullanılarak seçilen oranlar arasında taramalı elektron mikroskobu (SEM) ve X-ışını Kırınımı (XRD) kullanılarak bir morfoloji karakterizasyon testi gerçekleştirildi. En uygun karışım, üç farklı fraksiyon oranında (011, 111 ve 112) optimum COP'yi üretti. Sonuç, hibrit nanoakışkanların zeotropik (011) sıfır gram-TiO2, 7.5g-Al2O3/CuO; (112) 3,75 g-TiO2/Al2O3, 7,5 g-/CuO ve (111) 5,0g-TiO2/Al2O3/CuO sırasıyla %3,1, %1,41 ve %1,21 ile en iyi optimum performansı üretti. COP'nin (011) karışımında -7 oC soğutucu akışkan sıcaklığında yaklaşık %3,1 oranında en yüksek olduğu bulunmuştur. Maksimum kompresör güç katsayısının, hacimsel soğutma kapasitesinin ve TEGWI'nin sırasıyla %13,51, %5,78 ve 1,06 kg/sn CO2 oranında arttığı bulunmuştur. Çalışma aynı zamanda baz akışkana karıştırılan nanopartiküllerin %0,003'lük daha küçük bir partikül kısmı ile bile ısı transfer katsayısını arttırdığını ve %0,0075 Hacimlik optimum uygulama iyileştirmesini ortaya çıkardı. Her bir bileşendeki ekserji yıkımının çeşitli % oranlarında hesaplanan değerleri Ek I'de sunulmaktadır. Çalışmanın sonucu, hibrit-nanoakışkan zeotropik karışımın enerji açısından verimli ve çevre dostu olduğunu, CFC'ler ve HCFC'lerden daha sağlıklı iyi özelliklere sahip olduğunu ve daha sağlıklı kompresör sunabileceğini doğruladı. /buzdolabı çalışma sıvısı ikamesi, VCRS ve iklimlendirme operasyonlarında kullanılacaktır.

References

  • Ajayi, O. O., Ukasoanya, D. E., Ogbonnaya, M., Salawu, E. Y., Okokpujie, I. P., Akinlabi, S. A., Akinlabi, E. T., & Owoeyed, F. T. (2019). Investigation of the Effect of R134a/Al2O3- Nanofluid on the Performance of a Domestic Vapour Compression Refrigeration System. Procedia Manufacturing, 35, 112-117. https://doi.org/10.1016/j.promfg.2019.05.012
  • Akanimo, E, U., Ikpe, A. E., & Ikpe, E. O. (2022). Exergy Performance Assessment of Hybridize-Nanofluids Zeotropic Blend as Refrigerant Replacement in Vapor Compression Refrigeration System. III International Siirt Conference on Scientific Research, (pp. 947-958), November 18-19, Siirt University, Turkey.
  • Akilu, S., Baheta, A. T., & Sharma, K. V. (2018). Experimental measurements of thermal conductivity and viscosity of ethylene glycol-based hybrid nanofluid with TiO2-CuO/C inclusions. Journal of Molecular Liquid, 246, 396-405. https://doi.org/10.1016/j.molliq.2017.09.017
  • Anand, S., & Tyagi, S. K. (2020). Exergy analysis and experimental study of a vapour compression refrigeration cycle. Journal of Thermal Analysis and Calorimetry, 110, 961-971. https://doi.org/10.1007/s10973-011-1904-z
  • Asadi A, Asadi M, Rezaei M, Siahmargoi, M., & Asadi F. (2016). The effect of temperature and solid concentration on dynamic viscosity of MWCNT/MgO (20-80)-SAE50 hybrid nano- lubricant and proposing a new correlation: an experimental study. International Communications in Heat and Mass Transfer, 78, 48-53. https://doi.org/10.1016/j.icheatmasstransfer.2016.08.021
  • Babarinde, T. O., Ohunakin, O. S., Adelekan, D. S., Aasa, S. A., & Oyedepo, S. O. (2015). Experimental study on LPG and R134a refrigerants in vapor compression refrigeration. International Journal of Energy for a Clean Environment, 16(1-4), 71-80. http://dx.doi.org/10.1615/InterJEnerCleanEnv.2016015644.
  • Baskaran, A. K., & Mathews, P., (2015). Investigation of new eco-friendly refrigerant mixture alternative to R134a in domestic refrigerator. Australian Journal of Basic and Applied Sciences, 9(5), 297-306.
  • Bhattad, A., Sarkar, J., & Ghosh, P. (2018). Improving the performance of refrigeration systems by using nanofluids: A comprehensive review. Renewable and Sustainable Energy Reviews, 82(3), 3656-3669. http://dx.doi.org/10.1016/j.rser.2017.10.097.
  • Chaudhari, C. S., & Sapali S. N. (2017). Performance investigation of Natural Refrigerant R290 as a substitute to R22 in Refrigeration Systems. International conference on RAAR Energy Procedia, 109, 346-352. https://doi.org/10.1016/j.egypro.2017.03.084
  • Flores, R. A., Aviña-Jiménez, H. M., González, E. P., & González-Uribe, L. A. (2019). Aerothermodynamic design of 10 kW radial inflow turbine for an organic flashing cycle using low-enthalpy resources. Journal of Cleaner Production, 251, 119713. http://doi.org/10.1016/j.jclepro.2019.119713
  • Haque, M. E., Bakar, R. A., Kadirgama, K., Noor, M. M., & Shakaib, M. (2016). Performance of a domestic refrigerator using nanoparticles-based polyolester oil lubricant. Journal of Mechanical Engineering and Sciences, 10(1), 1778-1791. http://dx.doi.org/10.15282/jmes.10.1.2016.3.0171
  • Haque, M. E., Bakar, R. A., Kadirgama, K., Noor, M. M., & Shakaib, M. (2016). Performance of a domestic refrigerator using nanoparticles-based Polyolester oil lubricant. Journal of Mechanical Engineering and Sciences, 10(1), 1778-1791. https://doi.org/10.15282/jmes.10.1.2016.3.0171
  • Henderson, K., Park, Y., Liu, L., & Jacobi, A. M. (2010). Flow boiling heat transfer of R134a-based nanofluids in a horizontal tube. International Journal of Heat and Mass Transfer, 53(5-6), 944-951. https://doi.org/10.1016/j.ijheatmasstransfer.2009.11.026
  • Imre, A., Kustán, R., & Groniewsky, A. (2019). Thermodynamic selection of the optimal Working fluid for organi Rankine cycles. Energies, 12(10), 20-28. https://doi.org/10.3390/en12102028
  • Joybari, M. M., Hatamipour, M. S., Rahimi, A., & Modarres, F. G. (2013). Exergy analysis and optimization of R600a as a replacement of R134a in a domestic refrigerator system. International Journal of Refrigeration, 36(4), 1233-1242. https://doi.org/10.1016/j.ijrefrig.2013.02.012
  • Joybari, M. M., Seddegh, S., Wang, X., & Haghighat, F. (2019). Experimental investigation of multiple tube heat transfer enhancement in a vertical cylindrical latent heat thermal energy storage system. Renewable Energy, 140, 234-244. http://doi.org/10.1016/j.renene.2019.03.037
  • König-Haagen, A., Höhlein, S., & Brüggemann, D. (2020). Detailed exergetic analysis of a packed bed thermal energy storage unit in combination with an Organic Rankine Cycle. Applied Thermal Engineering, 165, 114583. https://doi.org/10.1016/j.applthermaleng.2019.114583
  • Krauzina, M. T., Bozhko, A. A., Krauzin, P. V., & Suslov, S. A. (2017). Complex behavior of a nanofluid near thermal convection onset: Its nature and features. International Journal of Heat and Mass Transfer, 104, 688-692. https://doi.org/10.1016/j.ijheatmasstransfer.2016.08.106
  • Krishna, S., Gobinath, N., Sajith, N. V., Sumitesh, D., & Sobhan, C. B. (2012). Application of TiO2 nanoparticles as a lubricant-additive for vapour compression refrigeration systems: An experimental investigation. International Journal of Refrigeration, 35(7), 243-283. https://doi.org/10.1016/j.ijrefrig.2012.07.002
  • Liu, Z. H., & Zhu, Q. Z. (2011). Application of aqueous Nanofluids in a horizontal mesh heat pipe. Energy Conversion and Management, 52(1), 292-300. https://doi.org/10.1016/j.enconman.2010.07.001
  • Maheshwary, P. B., Handa, C. C., & Nemade, K. R. (2018). Effect of Shape on Thermophysical and Heat Transfer Properties of ZnO/R-134a Nanorefrigerant. Materials Today: Proceedings, 5(1), 1635-1639. https://doi.org/10.1016/j.matpr.2017.11.257
  • Nabil, M. F., Azmi, W. H., Hamid, K. A., Zawawi, N., Priyandoko, G., & Mamat, R. (2017). Thermophysical properties of hybrid nanofluids and hybrid nanolubricants: A comprehensive review on performance. International Communications in Heat and Mass Transfer, 83, 30-39. https://doi.org/10.1016/j.icheatmasstransfer.2017.03.008
  • Nayak, A. K., Hagishima, A., & Tanimoto, J. (2020). A simplified numerical model for evaporative cooling by water spray over roof surfaces. Applied Thermal Engineering, 165, 114514. https://doi.org/10.1016/j.applthermaleng.2019.114514
  • Paula de, C. H., Duarte, W. M., Rocha T. T. M., Oliveria R. N., & Maia A. A. T. (2020). Optimal Design and Environmental, Energy and Exergy Analysis of a VCR System using R290, R1234yf, and R744 as Alternatives to replace R134a. International Journal of Refrigeration, 113, 10-20. http://dx.doi.org/10.1016/j.ijrefrig.2020.01.012
  • Rasti, M., Aghamiri, S., & Hatamipour, M. S. (2013). Energy efficiency enhancement of a domestic refrigerator using R436A and R600a as alternative refrigerants to R134a. International Journal of Thermal Sciences, 74, 86-94. https://doi.org/10.1016/j.ijthermalsci.2013.07.009
  • Royal, M. V., Ahamed, M., Kumar, R., & Krishna, H. (2019). Experimental Study on Al2O3-R134a Nano Refrigerant in Refrigeration System. Journal of Emerging Technologies and Innovative Research, 6(5), 161-166.
  • Sabareesh, R. K., Gobinath, N., Sajith, V., Das, S., & Sobhan, C. B. (2012). Application of TiO2 nanoparticles as a lubricant-additive for vapor compression refrigeration systems-An experimental investigation. International journal of refrigeration, 35(7), 1989-1996. https://doi.org/10.1016/j.ijrefrig.2012.07.002
  • Sarkar, J., Bhattacharya, S., Lal, A. (2013). Selection of suitable natural refrigerants pairs for cascade refrigeration system. Proceedings of the Institution of Mechanical Engineers Part A: Journal of Power and Energy, 227(5), 612-622. https://doi.org/10.1177/0957650913487730
  • Selvam, C., Lal, D. M., & Harish, S. (2016). Thermophysical properties of ethylene glycol-water mixture containing silver. International Journal of Research in Engineering and Innovation, 30, 1271-1279. https://doi.org/10.1007/s12206-016-0231-5
  • Yang, Z., Liu, B., & Zhao, H. (2004). Experimental study of the inert effect of R134a and R227ea on explosion limits of the flammable refrigerants. Experimental Thermal and Fluid Science, 28(6), 557-563. https://doi.org/10.1016/j.expthermflusci.2003.06.005
  • Zhang, X., Wang, F., Fan, X., Duan, H., & Zhu, F. (2017). An investigation of a heat pump system using CO2/propane mixture as a working fluid. International Journal of Green Energy, 14(1), 105-111. https://doi.org/10.1080/15435075.2016.1253577
  • Zhelezny, V. P., Lukianov, N. N., Khliyeva, O. Y., Nikulina, A. S., & Melnyk, A. V. (2017). A complex investigation of the nanofluids R600a-mineral oil-Al2O3 and R600a-mineral oil-TiO2. Thermophysical properties. International Journal of Refrigeration, 74, 488-504. https://doi.org/10.1016/j.ijrefrig.2016.11.008
There are 32 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Aniekan Ikpe 0000-0001-9069-9676

Akanimo Udofia Ekpenyong 0000-0002-7642-3451

Publication Date December 15, 2024
Submission Date December 26, 2022
Acceptance Date August 19, 2024
Published in Issue Year 2024 Volume: 14 Issue: 4

Cite

APA Ikpe, A., & Udofia Ekpenyong, A. (2024). Buhar sıkıştırmalı soğutma sistemindeki hibrit-nanoakışkan zeotropik karışımların termo-fiziksel değerlendirilmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(4), 1021-1038. https://doi.org/10.17714/gumusfenbil.1224486