Research Article
BibTex RIS Cite

A computational fluid dynamics ınvestigation of the utilization of waste biomass fuels for syngas production in a downdraft reactor

Year 2024, Volume: 14 Issue: 4, 1074 - 1087, 15.12.2024
https://doi.org/10.17714/gumusfenbil.1397368

Abstract

Biomass gasification, one of the gasification technologies, is among the technologies being developed for environmentally friendly and clean energy production of waste non-forest wood products and is a common subject of study in this field. In this study, gasification of three different biomasses (pine wood, pinecone, and hazelnut shell) in a downdraft reactor was analyzed and simulated. Ansys-Fluent commercial software (version 2020) was used for the analysis and calculations. A small-scale gasification reactor was modeled, and fuel and air feed conditions were determined. The air-fuel ratio required for gasification was analyzed with different equivalence ratios (0,15-0,35) to demonstrate the difference from stoichiometric combustion. According to the reactor gas temperature distribution and the content of the synthesis gas produced, it was determined that the equivalence ratio of 0,20 is suitable for a gasifier of this scale. By reaching temperatures above 900 °C in the reactor, the contours of CO, H2O and CH4 combustibles in the synthesis gas content in the reactor were shown and its proportions in the mixture were determined. The results were found to be consistent with the values in scientific literature. It was revealed that waste biomass can be used in clean energy production, and it is possible to develop fuel and capacity specific gasification reactors with CFD analysis.

References

  • Ahrenfeldt, J., Thomsen, T. P., Henriksen, U., & Clausen, L. R. (2013). Biomass gasification cogeneration – a review of state of the art technology and near future perspectives. Applied Thermal Engineering, 50, https://doi.org/10.1016/j.applthermaleng.2011.12.040, 1407-1417.
  • AlNouss, A., McKay, G., & Al-Ansari, T. (2020). A comparison of steam and oxygen fed biomass gasification through a techno-economic-environmental study. Energy Conversion and Management, 208, 112612.
  • Asadullah, M. (2014). Biomass gasification gas cleaning for downstream applications: a comparative critical review. Renewable and Sustainable Energy Reviews, 40, https://doi.org/10.1016/j.rser.2014.07.132, 118-132.
  • Basu, P. (2010). Biomass gasification and pyrolysis: practical design and theory. USA: Elseveir, Academic press.
  • Basu, P. (2018). Biomass gasification, pyrolysis and torrefaction: practical design and theory. Canada: Elseiver, Academic Press.
  • Blasi, C. D., & Branca, C. (2013). Modeling a stratified downdraft wood gasifier with primary and secondary air entry. Fuel, 104, https://doi.org/10.1016/j.fuel.2012.10.014, 847-860.
  • Brebua, M., Ucar, S., Vasile, C., & Yanik, J. (2010). Co-pyrolysis of pine cone with synthetic polymers. Fuel, 89(8), 1911-1918.
  • Bridgwater, A., Toft, A., & Brammer, J. (2002). A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renewable and Sustainable Energy Reviews, 6, https://doi.org/10.1016/S1364-0321(01)00010-7, 181-246.
  • Cai, J., Wang, S., & Cao Kuang. (2017). Experimental and numerical ınvestigations on gasification of biomass briquette in a sectional heating gasifier. Energy Procedia, 105, https://doi.org/10.1016/j.egypro.2017.03.428, 1234-1241.
  • Danışmaz, M. (2017). Synthesis gas production with gasification technique and use in gas burning systems. [Doktora Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü].
  • Demirbas, A. (2000). Biomass resources for energy and chemical industry. Energy Edu Sci Technology, 5, 21-45.
  • Demirtaş, C., & Danışmaz, M. (2016). Gazifikasyon yöntemiyle sentez gazı üretimi ve gaz yakma sistemlerinde kullanımı. International Journal of Nuclear and Radiation Science and Technology, 1(2), 14-19.
  • Demirtaş, C., & Danışmaz, M. (2021). Experimental investigation of the relationship between the core temperature of hazelnuts and ambient conditions in the drying process. International Journal of Computational and Experimental Science and Engineering, 7-1, https://doi.org/10.22399/ijcesen.905196, 29-34.
  • de Vries, W., de Jong, A., Kros, J., & Spijker, J. (2021). The use of soil nutrient balances in deriving forest biomass harvesting guidelines specific to region, tree species and soil type in the Netherlands. Forest Ecology and Management, 479, 118591.
  • Gao, X., Xu, F., Bao, F., Tu, C., Zhang, Y., Wang, Y., &Li, B. (2019). Simulation and optimization of rice husk gasification using intrinsic reaction rate based CFD model. Renewable Energy, 139, https://doi.org/10.1016/j.renene.2019.02.108), 611-620.
  • Inc, A. (2013). ANSYS Fluent Theory Guide. ANSYS inc. (US).
  • Hosseini M., Dincer I., &Rosen M. A. (2012), Steam and air fed biomass gasification: Comparisons based on energy and exergy, International Journal of Hydrogen Energy, vol. 37, Issue 21, pp. 16446-16452, https://doi.org/10.1016/j.ijhydene.2012.02.115.
  • Kumar, U., & Paul, M. C. (2019). CFD modelling of biomass gasification with a volatile break-up approach. Chemical Engineering Science, 195, https://doi.org/10.1016/j.ces.2018.09.038, 413-422.
  • Ma, Z., Zhang, Y., Zhang, Q., Qu, Y., Zhou, J., & Qin, H. (2012). Design and experimental investigation of a 190 kWe biomass fixed bed gasification and polygeneration pilot plant using a double air stage downdraft approach,. Energy, 46, https://doi.org/10.1016/j.energy.2012.09.008, 140-147.
  • Maya, D. M., Lora, E. E., Andrade, R. V., Ratner, A., & Angel, J. D. (2021). Biomass gasification using mixtures of air, saturated steam, and oxygen in a two-stage downdraft gasifier. Assessment using a CFD modeling approach. Renewable Energy, 177, https://doi.org/10.1016/j.renene.2021.06.051, 1014-1030.
  • Monteiro, E., Ismail, T. M., Ramos, A., M. Abd El-Salam, Brito, P., & Rouboa, A. (2017). Assessment of the miscanthus gasification in a semi-industrial gasifier using a CFD model. Applied Thermal Engineering, 123, https://doi.org/10.1016/j.applthermaleng.2017.05.128, 448-457.
  • Nimlos, M. R., & Crowley, M. F. (2010). Computational Modeling in Lignocellulosic Biofuel Production. USA: American Chemical Society, ISBN13: 9780841225718.
  • Onay, Ö., & Koçkar, Ö. M. (1998). Fındık kabuklarından hızlı proliz yöntemiyle sntetik sıvı eldesi. Osmangazi Ünıversitesi Müh. Mim. Fak. Dergisi, 11(1), 72-81.
  • Pandey, B., Prajapati, Y. K., & Sheth, P. N. (2021). CFD Analysis of biomass gasification using downdraft gasifier. Materials Proceedings, 44(6), 4107-4111.
  • Patel, K. D., Shah, N. K., & Patel, R. N. (2013). CFD Analysis of spatial distribution of various parameters in downdraft gasifier,. Procedia Engineering,, 51, 764-769, https://doi.org/https://doi.org/10.1016/j.proeng.2013.01.109.
  • Ruiz, J., Juárez, M., M.P. Morales, Muñoz, P., & Mendívil, M. (2013). Biomass gasification for electricity generation: Review of current technology barriers. Renewable and Sustainable Energy Reviews, 18, https://doi.org/10.1016/j.rser.2012.10.021, 174-183.
  • Shayan E., Zare V., &Mirzaee I., Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents, Energy Conversion and Management, vol. 159, 30-41, https://doi.org/10.1016/j.enconman.2017.12.096.
  • Shen, Y., Li, X., Yao, Z., Cui, X., & Wang, C.-H. (2019). CO2 gasification of woody biomass: Experimental study from a lab-scale reactor to a small-scale autothermal gasifier. Energy, 170, https://doi.org/10.1016/j.energy.2018.12.176, 497-506.
  • Sheth, P. N., & Babu, B. (2009). Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier. Bioresource Technology, 100, https://doi.org/10.1016/j.biortech.2009.01.024, 3127-3133.
  • Sibiya N.T., Oboirien B., Lanzini A., Gandiglio M., Ferrero D., Papurello D. & Bada S.O. (2021), Effect of different pre-treatment methods on gasification properties of grass biomass, Renewable Energy, vol. 170, pp. 875-883, https://doi.org/10.1016/j.renene.2021.01.147.
  • Simone, M., Nicolella, C., & Tognotti, L. (2013). Numerical and experimental investigation of downdraft gasification of woody residues. Bioresource Technology, 133, https://doi.org/10.1016/j.biortech.2013.01.056, 92-101.
  • Stančin H., Šafář M., Růžičková J., Mikulčić H., Raclavská H., Wang X., & Duić, N. (2021), Co-pyrolysis and synergistic effect analysis of biomass sawdust and polystyrene mixtures for production of high-quality bio-oils, Process Safety and Environmental Protection, vol. 145, pp 1-11, https://doi.org/10.1016/j.psep.2020.07.023.
  • Türkoğlu, T. T., & Gökoğlu, C. (2017). Kızılçam Ormanları Hasat Artıklarından Yapılan Odun Peletinin Yakıt Özelliklerinin Belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 58-63.
  • Zhang, W. (2010), Automotive fuels from biomass via gasification, Fuel Processing Technology, vol. 91, Issue 8, 866-876, https://doi.org/10.1016/j.fuproc.2009.07.010.
  • Zheng Y. & Qiu F. (2020), Bioenergy in the Canadian Prairies: Assessment of accessible biomass from agricultural crop residues and identification of potential biorefinery sites, Biomass and Bioenergy, vol. 140, https://doi.org/10.1016/j.biombioe.2020.105669.

Atık biyokütle yakıtlarının aşağı akışlı reaktörde sentez gazı üretiminde kullanımının hesaplamalı akışkanlar dinamiğiyle incelenmesi

Year 2024, Volume: 14 Issue: 4, 1074 - 1087, 15.12.2024
https://doi.org/10.17714/gumusfenbil.1397368

Abstract

Gazlaştırma teknolojilerinden biri olan biyokütle gazlaştırması, atık orman dışı odun ürünlerinin çevreci ve temiz enerji üretiminde kullanımı amacıyla geliştirilmekte olan teknolojilerden biridir ve bu alanda yaygın çalışma konuları arasındadır. Bu çalışmada, üç farklı biyokütlenin (Çam odunu, çam kozalağı, fındık kabuğu) aşağı akışlı bir reaktördeki gazlaştırma analiz ve simülasyonu yapıldı. Analiz ve hesaplamalarda Ansys-Fluent ticari yazılımının 2020 versiyonu kullanıldı. Küçük ölçekli bir gazlaştırma reaktörü modellenerek yakıt ve hava besleme koşulları belirlendi. Gazlaştırma için gerekli hava-yakıt oranının, stokiyometrik yanmadan farklılığını ortaya koymak için farklı eşdeğerlik oranlarıyla (0,15-0,35) analizler yapıldı. Reaktördeki gazın sıcaklık dağılımı ve üretilen sentez gazının içeriğine göre 0,20 eşdeğerlik oranı değerinin bu ölçekte bir gazlaştırıcı için uygun olduğu belirlendi. Reaktör içerisinde 900 °C’nin üzerinde sıcaklık değerlerine ulaşılarak sentez gazı içeriğindeki CO, H2O ve CH4 yanıcılarının reaktör içerisindeki kontürleri gösterildi ve karışımdaki oranları belirlendi. Bulguların bilimsel literatürdeki değerlerle uyumlu sonuçlar içerdiği görüldü. Atık biyokütlelerin temiz enerji üretiminde kullanılabileceği ve ayrıca, HAD analiziyle yakıt ve kapasite özelinde gazlaştırma reaktörlerinin geliştirilmesinin mümkün olduğu ortaya kondu.

Ethical Statement

Bu makalenin yazarı, bu çalışmada kullanılan materyal ve yöntemlerin etik kurul izni ve / veya yasal-özel izin gerektirmediğini beyan etmektedir

References

  • Ahrenfeldt, J., Thomsen, T. P., Henriksen, U., & Clausen, L. R. (2013). Biomass gasification cogeneration – a review of state of the art technology and near future perspectives. Applied Thermal Engineering, 50, https://doi.org/10.1016/j.applthermaleng.2011.12.040, 1407-1417.
  • AlNouss, A., McKay, G., & Al-Ansari, T. (2020). A comparison of steam and oxygen fed biomass gasification through a techno-economic-environmental study. Energy Conversion and Management, 208, 112612.
  • Asadullah, M. (2014). Biomass gasification gas cleaning for downstream applications: a comparative critical review. Renewable and Sustainable Energy Reviews, 40, https://doi.org/10.1016/j.rser.2014.07.132, 118-132.
  • Basu, P. (2010). Biomass gasification and pyrolysis: practical design and theory. USA: Elseveir, Academic press.
  • Basu, P. (2018). Biomass gasification, pyrolysis and torrefaction: practical design and theory. Canada: Elseiver, Academic Press.
  • Blasi, C. D., & Branca, C. (2013). Modeling a stratified downdraft wood gasifier with primary and secondary air entry. Fuel, 104, https://doi.org/10.1016/j.fuel.2012.10.014, 847-860.
  • Brebua, M., Ucar, S., Vasile, C., & Yanik, J. (2010). Co-pyrolysis of pine cone with synthetic polymers. Fuel, 89(8), 1911-1918.
  • Bridgwater, A., Toft, A., & Brammer, J. (2002). A techno-economic comparison of power production by biomass fast pyrolysis with gasification and combustion. Renewable and Sustainable Energy Reviews, 6, https://doi.org/10.1016/S1364-0321(01)00010-7, 181-246.
  • Cai, J., Wang, S., & Cao Kuang. (2017). Experimental and numerical ınvestigations on gasification of biomass briquette in a sectional heating gasifier. Energy Procedia, 105, https://doi.org/10.1016/j.egypro.2017.03.428, 1234-1241.
  • Danışmaz, M. (2017). Synthesis gas production with gasification technique and use in gas burning systems. [Doktora Tezi, Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü].
  • Demirbas, A. (2000). Biomass resources for energy and chemical industry. Energy Edu Sci Technology, 5, 21-45.
  • Demirtaş, C., & Danışmaz, M. (2016). Gazifikasyon yöntemiyle sentez gazı üretimi ve gaz yakma sistemlerinde kullanımı. International Journal of Nuclear and Radiation Science and Technology, 1(2), 14-19.
  • Demirtaş, C., & Danışmaz, M. (2021). Experimental investigation of the relationship between the core temperature of hazelnuts and ambient conditions in the drying process. International Journal of Computational and Experimental Science and Engineering, 7-1, https://doi.org/10.22399/ijcesen.905196, 29-34.
  • de Vries, W., de Jong, A., Kros, J., & Spijker, J. (2021). The use of soil nutrient balances in deriving forest biomass harvesting guidelines specific to region, tree species and soil type in the Netherlands. Forest Ecology and Management, 479, 118591.
  • Gao, X., Xu, F., Bao, F., Tu, C., Zhang, Y., Wang, Y., &Li, B. (2019). Simulation and optimization of rice husk gasification using intrinsic reaction rate based CFD model. Renewable Energy, 139, https://doi.org/10.1016/j.renene.2019.02.108), 611-620.
  • Inc, A. (2013). ANSYS Fluent Theory Guide. ANSYS inc. (US).
  • Hosseini M., Dincer I., &Rosen M. A. (2012), Steam and air fed biomass gasification: Comparisons based on energy and exergy, International Journal of Hydrogen Energy, vol. 37, Issue 21, pp. 16446-16452, https://doi.org/10.1016/j.ijhydene.2012.02.115.
  • Kumar, U., & Paul, M. C. (2019). CFD modelling of biomass gasification with a volatile break-up approach. Chemical Engineering Science, 195, https://doi.org/10.1016/j.ces.2018.09.038, 413-422.
  • Ma, Z., Zhang, Y., Zhang, Q., Qu, Y., Zhou, J., & Qin, H. (2012). Design and experimental investigation of a 190 kWe biomass fixed bed gasification and polygeneration pilot plant using a double air stage downdraft approach,. Energy, 46, https://doi.org/10.1016/j.energy.2012.09.008, 140-147.
  • Maya, D. M., Lora, E. E., Andrade, R. V., Ratner, A., & Angel, J. D. (2021). Biomass gasification using mixtures of air, saturated steam, and oxygen in a two-stage downdraft gasifier. Assessment using a CFD modeling approach. Renewable Energy, 177, https://doi.org/10.1016/j.renene.2021.06.051, 1014-1030.
  • Monteiro, E., Ismail, T. M., Ramos, A., M. Abd El-Salam, Brito, P., & Rouboa, A. (2017). Assessment of the miscanthus gasification in a semi-industrial gasifier using a CFD model. Applied Thermal Engineering, 123, https://doi.org/10.1016/j.applthermaleng.2017.05.128, 448-457.
  • Nimlos, M. R., & Crowley, M. F. (2010). Computational Modeling in Lignocellulosic Biofuel Production. USA: American Chemical Society, ISBN13: 9780841225718.
  • Onay, Ö., & Koçkar, Ö. M. (1998). Fındık kabuklarından hızlı proliz yöntemiyle sntetik sıvı eldesi. Osmangazi Ünıversitesi Müh. Mim. Fak. Dergisi, 11(1), 72-81.
  • Pandey, B., Prajapati, Y. K., & Sheth, P. N. (2021). CFD Analysis of biomass gasification using downdraft gasifier. Materials Proceedings, 44(6), 4107-4111.
  • Patel, K. D., Shah, N. K., & Patel, R. N. (2013). CFD Analysis of spatial distribution of various parameters in downdraft gasifier,. Procedia Engineering,, 51, 764-769, https://doi.org/https://doi.org/10.1016/j.proeng.2013.01.109.
  • Ruiz, J., Juárez, M., M.P. Morales, Muñoz, P., & Mendívil, M. (2013). Biomass gasification for electricity generation: Review of current technology barriers. Renewable and Sustainable Energy Reviews, 18, https://doi.org/10.1016/j.rser.2012.10.021, 174-183.
  • Shayan E., Zare V., &Mirzaee I., Hydrogen production from biomass gasification; a theoretical comparison of using different gasification agents, Energy Conversion and Management, vol. 159, 30-41, https://doi.org/10.1016/j.enconman.2017.12.096.
  • Shen, Y., Li, X., Yao, Z., Cui, X., & Wang, C.-H. (2019). CO2 gasification of woody biomass: Experimental study from a lab-scale reactor to a small-scale autothermal gasifier. Energy, 170, https://doi.org/10.1016/j.energy.2018.12.176, 497-506.
  • Sheth, P. N., & Babu, B. (2009). Experimental studies on producer gas generation from wood waste in a downdraft biomass gasifier. Bioresource Technology, 100, https://doi.org/10.1016/j.biortech.2009.01.024, 3127-3133.
  • Sibiya N.T., Oboirien B., Lanzini A., Gandiglio M., Ferrero D., Papurello D. & Bada S.O. (2021), Effect of different pre-treatment methods on gasification properties of grass biomass, Renewable Energy, vol. 170, pp. 875-883, https://doi.org/10.1016/j.renene.2021.01.147.
  • Simone, M., Nicolella, C., & Tognotti, L. (2013). Numerical and experimental investigation of downdraft gasification of woody residues. Bioresource Technology, 133, https://doi.org/10.1016/j.biortech.2013.01.056, 92-101.
  • Stančin H., Šafář M., Růžičková J., Mikulčić H., Raclavská H., Wang X., & Duić, N. (2021), Co-pyrolysis and synergistic effect analysis of biomass sawdust and polystyrene mixtures for production of high-quality bio-oils, Process Safety and Environmental Protection, vol. 145, pp 1-11, https://doi.org/10.1016/j.psep.2020.07.023.
  • Türkoğlu, T. T., & Gökoğlu, C. (2017). Kızılçam Ormanları Hasat Artıklarından Yapılan Odun Peletinin Yakıt Özelliklerinin Belirlenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(1), 58-63.
  • Zhang, W. (2010), Automotive fuels from biomass via gasification, Fuel Processing Technology, vol. 91, Issue 8, 866-876, https://doi.org/10.1016/j.fuproc.2009.07.010.
  • Zheng Y. & Qiu F. (2020), Bioenergy in the Canadian Prairies: Assessment of accessible biomass from agricultural crop residues and identification of potential biorefinery sites, Biomass and Bioenergy, vol. 140, https://doi.org/10.1016/j.biombioe.2020.105669.
There are 35 citations in total.

Details

Primary Language Turkish
Subjects Fundamental and Theoretical Fluid Dynamics, Fluid Mechanics and Thermal Engineering (Other)
Journal Section Articles
Authors

Merdin Danışmaz 0000-0003-2077-9237

Publication Date December 15, 2024
Submission Date November 28, 2023
Acceptance Date August 19, 2024
Published in Issue Year 2024 Volume: 14 Issue: 4

Cite

APA Danışmaz, M. (2024). Atık biyokütle yakıtlarının aşağı akışlı reaktörde sentez gazı üretiminde kullanımının hesaplamalı akışkanlar dinamiğiyle incelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(4), 1074-1087. https://doi.org/10.17714/gumusfenbil.1397368