Research Article
BibTex RIS Cite

Algoritma tabanlı yeni arayüz yazılımı ile karayolu uygulaması kontrolünün artırılması

Year 2024, Volume: 14 Issue: 4, 1177 - 1194, 15.12.2024
https://doi.org/10.17714/gumusfenbil.1452606

Abstract

Günümüzde karayolu projelerinin uygulanması sırasında karşılaşılan en önemli problemlerden birisi, karayolu proje denetimlerinin doğru ve kısa sürede yapılamayışıdır. Bu yüzden hem zaman kaybı söz konusu olmakta hem de her noktada tam kontrol imkânı bulunmadığından; kontrol dışı yapımlar söz konusu olabilmektedir. Karayolu projeleri hazırlanırken sadece belirli noktaların enkesitleri alınabilmektedir. Bu kapsamda uygulama sırasında sadece belirli noktaların kontrolü mümkündür. Bu enkesit noktalarının dışındaki noktaların kontrol edilebilmesi ve projedeki enkesit noktalarının yol genişliğince eksen hattı dışındaki noktaların kontrolünü sağlayabilmek önemli bir avantaj kazandıracaktır. Bunun yanında hem zaman ve maliyet tasarrufu sağlanması, hem de çok kısa sürede uygulama sırasında projeye uygun şekilde enkesit eksen hattı dışında kalan noktalardaki imalatların yapımı ve kontrolünün sağlanabilmesi önemli kolaylık getirecektir. Bu bağlamda, herhangi bir noktanın ilk önce başlangıç noktasına uzaklığını (kilometrajını) ve aynı zamanda o noktanın yol eksenine olan uzaklığını hem de o noktaya ait kırmızı çizgisi üzerinde olması gereken yükseklik kotunu anında hesaplanabilması için bir algoritma tasarlanmıştır. Bu çalışma sonunda, elde edilen algoritma sayesinde bir bilgisayar programı (arayüz yazılımı) tasarlanmıştır. Proje yapım aşamasında bu arayüz kullanılarak herhangi bir nokta için, anında o noktaya ait tüm veriler gösterilebilmektedir. Örnek olarak; inşaatı tamamlanmış bir karayolu projesinde, bu arayüz kullanıldığı taktirde maliyet açısından ne kadar kar edildiğine dair analizler gerçekleştirilmiştir.

References

  • Babapour, R., Naghdi, R., Ghajar, I., & Mortazavi, Z. (2018). Forest road profile optimization using meta-heuristic techniques. Applied Soft Computing, 64, 126-137.
  • Bosurgi, G., Pellegrino, O., & Sollazzo, G. (2013). A PSO highway alignment optimization algorithm considering environmental constraints. Advances in Transportation Studies, 31, 23-32.
  • Che, G. W. (2017, May). Highway middle pile coordinate automatic calculation based on combine of Excel and Excel VBA program. In 2017 2nd International Conference on Materials Science, Machinery and Energy Engineering (MSMEE 2017) (pp. 1690–1696). Atlantis Press.
  • Chew, E. P., Goh, C. J., & Fwa, T. F. (1989). Simultaneous optimization of horizontal and vertical alignments for highways. Transportation Research Part B: Methodological, 23(5), 315-329.
  • Easa, S. M. (1988). Selection of roadway grades that minimize earthwork cost using linear programming. Transportation Research Part A: General, 22(2), 121-136.
  • Fwa, T. F., Chan, W. T., & Sim, Y. P. (2002). Optimal vertical alignment analysis for highway design. Journal of Transportation Engineering, 128(5), 395-402.
  • Ghanizadeh, A. R., & Heidarabadizadeh, N. (2018). Optimization of vertical alignment of highways in terms of earthwork cost using colliding bodies optimization algorithm. International Journal of Optimization in Civil Engineering, 8(4), 657-674.
  • Goh, C. J., Chew, E. P., & Fwa, T. F. (1988). Discrete and continuous models for computation of optimal vertical highway alignment. Transportation Research Part B: Methodological, 22(6), 399-409.
  • Goktepe, A. B., & Lav, A. H. (2003). Method for balancing cut-fill and minimizing the amount of earthwork in the geometric design of highways. Journal of Transportation Engineering, 129(5), 564-571.
  • Goktepe, A. B., & Lav, A. H. (2004). Method for optimizing earthwork considering soil properties in the geometric design of highways. Journal of Surveying Engineering, 130(4), 183-190.
  • Goktepe, A. B., Lav, A. H., & Altun, S. (2005). Dynamic optimization algorithm for vertical alignment of highways. Mathematical and Computational Applications, 10(3), 341-350.
  • Göktepe, A. B., Altun, S., & Ahmedzade, P. (2009). Optimization of vertical alignment of highways utilizing discrete dynamic programming and weighted ground line. Turkish Journal of Engineering and Environmental Sciences, 33(2), 105-116.
  • Jha, M. K., & Schonfeld, P. (2004). A highway alignment optimization model using geographic information systems. Transportation Research Part A: Policy and Practice, 38(6), 455-481.
  • Kim, E., Jha, M. K., & Son, B. (2003). A stepwise highway alignment optimization using genetic algorithms. In Proceedings of the 82nd Annual TRB Meeting (pp. 03-4158).
  • Kim, E., Jha, M. K., & Son, B. (2005). Improving the computational efficiency of highway alignment optimization models through a stepwise genetic algorithms approach. Transportation Research Part B: Methodological, 39(4), 339-360.
  • Kim, E., Jha, M. K., Schonfeld, P., & Kim, H. S. (2007). Highway alignment optimization incorporating bridges and tunnels. Journal of Transportation Engineering, 133(2), 71-81.
  • Li, S., & Shi, L. H. (2016, December). The application of Excel in highway vertical curve. In Proceedings of the 3rd International Conference on Wireless Communication and Sensor Networks (WCSN 2016) (pp. 598-602). Atlantis Press.
  • Moreb, A. A. (1996). Linear programming model for finding optimal roadway grades that minimize earthwork cost. European Journal of Operational Research, 93(1), 148-154.
  • Özkan, E. (2013). Optimization of highway vertical alignment by direct search technique [Master's thesis, Middle East Technical University].
  • Sütaş, İ., & Güven, Ö. (1986). Application and projecting in highway construction. Istanbul: Technical Books Publishing House.

Highway application control enhanced by algorithm-based new ınterface software

Year 2024, Volume: 14 Issue: 4, 1177 - 1194, 15.12.2024
https://doi.org/10.17714/gumusfenbil.1452606

Abstract

One of the significant challenges encountered during the implementation of highway projects today is the inability to perform accurate and timely inspections. This results in both loss of time and the potential for uncontrolled construction at various points due to insufficient control capabilities at every site. During the preparation of highway projects, cross-sections of only specific points can be obtained, which limits the scope of inspection during implementation. The ability to inspect points outside these cross-sections and control the areas beyond the axis line of the cross-section points during the project execution would provide a significant advantage. Additionally, this approach would result in time and cost savings, enabling the swift execution and control of construction at points outside the cross-section axis line according to project requirements. In this context, an algorithm has been designed to instantly calculate the distance of any point from the starting point, its distance from the road axis, and the required elevation along the designed elevation profile. This algorithm has been utilized to develop a computer program (interface software) to instantly calculate all relevant data for any given point during the project construction phase. For instance, in a completed highway project, using this interface facilitated the analyses of cost benefits achieved.

References

  • Babapour, R., Naghdi, R., Ghajar, I., & Mortazavi, Z. (2018). Forest road profile optimization using meta-heuristic techniques. Applied Soft Computing, 64, 126-137.
  • Bosurgi, G., Pellegrino, O., & Sollazzo, G. (2013). A PSO highway alignment optimization algorithm considering environmental constraints. Advances in Transportation Studies, 31, 23-32.
  • Che, G. W. (2017, May). Highway middle pile coordinate automatic calculation based on combine of Excel and Excel VBA program. In 2017 2nd International Conference on Materials Science, Machinery and Energy Engineering (MSMEE 2017) (pp. 1690–1696). Atlantis Press.
  • Chew, E. P., Goh, C. J., & Fwa, T. F. (1989). Simultaneous optimization of horizontal and vertical alignments for highways. Transportation Research Part B: Methodological, 23(5), 315-329.
  • Easa, S. M. (1988). Selection of roadway grades that minimize earthwork cost using linear programming. Transportation Research Part A: General, 22(2), 121-136.
  • Fwa, T. F., Chan, W. T., & Sim, Y. P. (2002). Optimal vertical alignment analysis for highway design. Journal of Transportation Engineering, 128(5), 395-402.
  • Ghanizadeh, A. R., & Heidarabadizadeh, N. (2018). Optimization of vertical alignment of highways in terms of earthwork cost using colliding bodies optimization algorithm. International Journal of Optimization in Civil Engineering, 8(4), 657-674.
  • Goh, C. J., Chew, E. P., & Fwa, T. F. (1988). Discrete and continuous models for computation of optimal vertical highway alignment. Transportation Research Part B: Methodological, 22(6), 399-409.
  • Goktepe, A. B., & Lav, A. H. (2003). Method for balancing cut-fill and minimizing the amount of earthwork in the geometric design of highways. Journal of Transportation Engineering, 129(5), 564-571.
  • Goktepe, A. B., & Lav, A. H. (2004). Method for optimizing earthwork considering soil properties in the geometric design of highways. Journal of Surveying Engineering, 130(4), 183-190.
  • Goktepe, A. B., Lav, A. H., & Altun, S. (2005). Dynamic optimization algorithm for vertical alignment of highways. Mathematical and Computational Applications, 10(3), 341-350.
  • Göktepe, A. B., Altun, S., & Ahmedzade, P. (2009). Optimization of vertical alignment of highways utilizing discrete dynamic programming and weighted ground line. Turkish Journal of Engineering and Environmental Sciences, 33(2), 105-116.
  • Jha, M. K., & Schonfeld, P. (2004). A highway alignment optimization model using geographic information systems. Transportation Research Part A: Policy and Practice, 38(6), 455-481.
  • Kim, E., Jha, M. K., & Son, B. (2003). A stepwise highway alignment optimization using genetic algorithms. In Proceedings of the 82nd Annual TRB Meeting (pp. 03-4158).
  • Kim, E., Jha, M. K., & Son, B. (2005). Improving the computational efficiency of highway alignment optimization models through a stepwise genetic algorithms approach. Transportation Research Part B: Methodological, 39(4), 339-360.
  • Kim, E., Jha, M. K., Schonfeld, P., & Kim, H. S. (2007). Highway alignment optimization incorporating bridges and tunnels. Journal of Transportation Engineering, 133(2), 71-81.
  • Li, S., & Shi, L. H. (2016, December). The application of Excel in highway vertical curve. In Proceedings of the 3rd International Conference on Wireless Communication and Sensor Networks (WCSN 2016) (pp. 598-602). Atlantis Press.
  • Moreb, A. A. (1996). Linear programming model for finding optimal roadway grades that minimize earthwork cost. European Journal of Operational Research, 93(1), 148-154.
  • Özkan, E. (2013). Optimization of highway vertical alignment by direct search technique [Master's thesis, Middle East Technical University].
  • Sütaş, İ., & Güven, Ö. (1986). Application and projecting in highway construction. Istanbul: Technical Books Publishing House.
There are 20 citations in total.

Details

Primary Language English
Subjects Transportation Engineering
Journal Section Articles
Authors

Sina Atabey 0009-0000-2514-8499

Şeref Oruç 0000-0001-5788-890X

Publication Date December 15, 2024
Submission Date March 14, 2024
Acceptance Date October 4, 2024
Published in Issue Year 2024 Volume: 14 Issue: 4

Cite

APA Atabey, S., & Oruç, Ş. (2024). Highway application control enhanced by algorithm-based new ınterface software. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 14(4), 1177-1194. https://doi.org/10.17714/gumusfenbil.1452606